MA 311 – Linear Algebra Homework #1 Due: January 31, 2023

1. Find vectors **v** and **w** so that

$$\boldsymbol{v} + \boldsymbol{w} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$
 and $\boldsymbol{v} - \boldsymbol{w} = \begin{bmatrix} 2 \\ 6 \\ 8 \end{bmatrix}$.

2. Determine values of α , β , and γ so that $\alpha \boldsymbol{u} + \beta \boldsymbol{v} + \gamma \boldsymbol{w} = \boldsymbol{b}$ where

$$\boldsymbol{u} = \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \qquad \boldsymbol{v} = \begin{bmatrix} -1\\2\\-1 \end{bmatrix} \qquad \boldsymbol{w} = \begin{bmatrix} 0\\-1\\2 \end{bmatrix} \qquad \boldsymbol{b} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}.$$

3. Show that the vector \boldsymbol{u} is a unit vector for all $\boldsymbol{\theta}$ and $\boldsymbol{\phi}$ where

$$\boldsymbol{u} = \begin{bmatrix} \cos\theta\cos\phi\\ \sin\theta\cos\phi\\ \sin\phi \end{bmatrix}.$$

- 4. If $\|\boldsymbol{v}\| = 5$ and $\|\boldsymbol{w}\| = 3$, what are the smallest and largest values of $\|\boldsymbol{v} \boldsymbol{w}\|$? What are the smallest and largest values of $\boldsymbol{v} \cdot \boldsymbol{w}$?
- 5. Find four orthogonal unit vectors with each components equal to either $\frac{1}{2}$ or $-\frac{1}{2}$.
- 6. (a) Find the inverse of the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{bmatrix}$$

(b) Solve the following system of equations

$$x + 2y + 3z = 1$$
$$y + 4z = 1$$
$$5x + 6y = 2$$

for x, y, and z.

7. Construct and 3×3 matrix that is not invertible, and explain why it is not invertible.