MA 311 - Linear Algebra
 Homework \#1
 Due: January 31, 2023

1. Find vectors \boldsymbol{v} and \boldsymbol{w} so that

$$
\boldsymbol{v}+\boldsymbol{w}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right] \quad \text { and } \quad \boldsymbol{v}-\boldsymbol{w}=\left[\begin{array}{l}
2 \\
6 \\
8
\end{array}\right] .
$$

2. Determine values of α, β, and γ so that $\alpha \boldsymbol{u}+\beta \boldsymbol{v}+\gamma \boldsymbol{w}=\boldsymbol{b}$ where

$$
\boldsymbol{u}=\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right] \quad \boldsymbol{v}=\left[\begin{array}{r}
-1 \\
2 \\
-1
\end{array}\right] \quad \boldsymbol{w}=\left[\begin{array}{r}
0 \\
-1 \\
2
\end{array}\right] \quad \boldsymbol{b}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] .
$$

3. Show that the vector \boldsymbol{u} is a unit vector for all θ and ϕ where

$$
\boldsymbol{u}=\left[\begin{array}{c}
\cos \theta \cos \phi \\
\sin \theta \cos \phi \\
\sin \phi
\end{array}\right]
$$

4. If $\|\boldsymbol{v}\|=5$ and $\|\boldsymbol{w}\|=3$, what are the smallest and largest values of $\|\boldsymbol{v}-\boldsymbol{w}\|$? What are the smallest and largest values of $\boldsymbol{v} \cdot \boldsymbol{w}$?
5. Find four orthogonal unit vectors with each components equal to either $\frac{1}{2}$ or $-\frac{1}{2}$.
6. (a) Find the inverse of the matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 4 \\
5 & 6 & 0
\end{array}\right]
$$

(b) Solve the following system of equations

$$
\begin{aligned}
x+2 y+3 z & =1 \\
y+4 z & =1 \\
5 x+6 y & =2
\end{aligned}
$$

for x, y, and z.
7. Construct and 3×3 matrix that is not invertible, and explain why it is not invertible.

