Learning METAPOST by Doing

André Heck
(c) 2003, AMSTEL Institute

Contents

1 Introduction 3
2 A Simple Example 3
2.1 Running METAPOST 3
2.2 Using the Generated PostScript in a $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ Document 5
2.3 The Structure of a METAPOST Document 6
2.4 Numeric Quantities 8
2.5 If Processing Goes Wrong 8
3 Basic Graphical Primitives 10
3.1 Pair 10
3.2 Path 13
3.2.1 Open and Closed Curves 13
3.2.2 Straight and Curved Lines 14
3.2.3 Construction of Curves 14
3.3 Angle and Direction Vector 18
3.4 Arrow 19
3.5 Circle, Ellipse, Square, and Rectangle 19
3.6 Text 21
4 Style Directives 26
4.1 Dashing 26
4.2 Coloring 27
4.3 Specifying the Pen 28
4.4 Setting Drawing Options 29
5 Transformations 29
6 Advanced Graphics 34
6.1 Joining Lines 34
6.2 Building Cycles 36
6.3 Clipping 37
6.4 Dealing with Paths Parametrically 38
7 Control Structures 42
7.1 Conditional Operations 42
7.2 Repetition 45
8 Macros 48
8.1 Defining Macros 48
8.2 Grouping and Local Variables 48
8.3 Vardef Definitions 49
8.4 Defining the Argument Syntax 50
8.5 Precedence Rules of Binary Operators 51
8.6 Recursion 51
8.7 Using Macro Packages 53
8.8 Mathematical functions 54
9 More Examples 55
9.1 Electronic Circuits 55
9.2 Marking Angles and Lines 58
9.3 Vectorfields 60
9.4 Riemann Sums 63
9.5 Iterated Functions 65
9.6 A Surface Plot 68
9.7 Miscellaneous 71
10 Solutions to the Exercises 73
11 Appendix 84

1 Introduction

$\mathrm{T}_{\mathrm{E}} \mathrm{i}$ is the well-known typographic programming language that allows its users to produce high-quality typesetting especially for mathematical text. METAPOST is the graphic companion of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$. It is a graphic programming language developed by John Hobby that allows its user to produce high-quality graphics. It is based on Donald Knuth's METAFONT, but with PostScript output and facilities for including typeset text. This course is only meant as a short, hands-on introduction to METAPOST for newcomers who want to produce rather simple graphics. The main objective is to get students started with METAPOST on a UNIX platform ${ }^{1}$. A more thorough, but also much longer introduction is the Metafun manual of Hans Hagen [Hag02]. For complete descriptions we refer to the METAPOST Manual and the Introduction to METAPOST of its creator John Hobby [Hob92a, Hob92b].

We have followed a few didactical guidelines in writing the course. Learning is best done from examples, learning is done from practice. The examples are often formatted in two columns, as follows: ${ }^{2}$

\square| beginfig(1); |
| :--- |
| draw unitsquare scaled $1 \mathrm{~cm} ;$ |
| endfig; |

The exercises give you the opportunity to practice METAPOST, instead of only reading about the program. Compare your answers with the ones in the section 'Solutions to the Exercises'.

2 A Simple Example

METAPOST is not a WYSIWYG drawing tool like xfig or xpaint. It is a graphic document preparation system. First, you write a plain text containing graphic formatting commands into a file by means of your favorite editor. Next, the METAPOST program converts this text into a PostScript document that you can preview and print. In this section we shall describe the basics of this process.

2.1 Running METAPOST

EXERCISE 1

Do the following steps:

1. Create a text file, say example.mp, that contains the following METAPOST statements:
```
beginfig(1);
draw (0,0)-- (10,0)-- (10, 10)-- (0, 10)-- (0,0);
endfig;
end;
```

Figure 1: A Simple METAPOST document.

[^0]For example, you can use the editor XEmacs:
xemacs example.mp

The above UNIX command starts the editor and creates the source file example.mp.
Good advice: always give a METAPOST source file a name with extension .mp.
This will make it easier for you to distinguish the source document from files with other extensions, which METAPOST will create during the formatting.
2. Generate from this file PostScript code. Here the METAPOST program does the job:

```
mpost example
```

It is not necessary to give the filename extension here. METAPOST now creates some additional files:
example. 1 that is a PostScript file can be printed and previewed;
example.log that is a transcript of the graphic formatting.
3. Check that the file example. 1 contains the following normal Encapsulated PostScript code: ${ }^{3}$

```
%!PS
%%BoundingBox: -1 -1 11 11
%%Creator: MetaPost
%%CreationDate: 2003.05.11:2203
%%Pages: 1
%%EndProlog
%%Page: 1 1
    0 0.5 dtransform truncate idtransform setlinewidth pop [] 0 setdash
    1 setlinecap 1 setlinejoin 10 setmiterlimit
newpath 0 0 moveto
10 0 lineto
10 10 lineto
0 10 lineto
0 10 lineto
0 O lineto stroke
showpage
%%EOF
```

Figure 2: A Simple PostScript Document generated from METAPOST.

[^1]4. Preview the PostScript document on your computer screen, e.g., by typing:

```
gs example.1
```

5. Convert the PostScript document into a printable PDF-document:
```
ps2pdf example.1
```

It creates the file example.pdf that you can you can view on the computer screen with the Adobe Acrobat Reader by entering the command:

```
acroread example.pdf
```

You can print this file in the usual way. The picture should look like the following small square:

2.2 Using the Generated PostScript in a $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ Document

EXERCISE 2
 Do the following steps:

1. Create a file, say sample.tex, that contains the following lines of $\mathrm{AA}_{\mathrm{E}} \mathrm{X}$ commands:
```
\documentclass{article}
\usepackage{graphicx}
\DeclareGraphicsRule{*}{eps}{*}{}
\begin{document}
\includegraphics{example.1}
```

Figure 3: A Simple $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ document that includes the image.

Above, we use the extended graphicx package for including the external graphic file that was prepared by METAPOST. The DeclareGraphicsRule statement causes all file extensions that are not associated with a well-known graphic format to be treated as Encapsulated PostScript files.
2. Typeset the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$-file:
latex example
When typesetting is successful, the device independent file sample.dvi is generated.
3. Convert the dvi-file sample.dvi into PostScript code:

```
dvips sample
```

4. Preview the PostScript code, e.g., by typing:
```
gs sample.ps
```

5. Convert the PostScript document sample.ps into a printable PDF document:
```
ps2pdf sample.ps
```

It creates the file sample.pdf.
6. You can avoid the intermediate PostScript generation. Just convert the DVI file immediately into a PDF document via the dvipdf command:

```
dvipdf sample
```


2.3 The Structure of a METAPOST Document

We shall use the above examples to explain the basic structure of an METAPOST document. We start with a closer look at the slightly modified METAPOST code in the file example.mp of our first example:

```
beginfig(1); % draw a square
draw (0,0)--(10,0)--(10,10)
    --(0,10)--(0,0);
endfig;
end;
```

This example illustrates the following list of general remarks about regular METAPOST files

- It is recommended to end each METAPOST program in a file with extension mp so that this part of the name can be omitted when invoking METAPOST.
- Each statement in a METAPOST program is ended by a semicolon. Only in cases where the statement has a clear endpoint, e.g., in the end and endfig statement, you may omit superfluous semicolons. We shall not do this in this tutorial. You can put two or more statements on one line as long as they are separated by semicolons. You may also stretch a statement across several lines of code and you may insert spaces for readability.
- You can add comments in the document by placing a percentage symbol $\%$ in front of the commentary. METAPOST ignores during processing of the document what comes in a line after the $\%$ symbol.
- A METAPOST document normally contains a sequence of beginfig and endfig pairs with an end statement after the last one. The numeric argument to the beginfig macro determines the name of the output file that will contain the PostScript code generated by the next graphic statements before the corresponding endfig command. In the above case, the output of the draw statement between beginfig(1) en endfig is written in the file example.1. In general, a METAPOST document consists of one or more instances of

```
beginfig(figure number);
graphic commands
endfig;
```

followed by end.

- The draw statement with the points separated by two hyphens (--) draws straight lines that connect the neighboring points. In the above case for example, the point $(0,0)$ is connected by straight lines with the point $(10,0)$ and $(0,10)$. The picture is a square with edges of size 10 units, where a unit is $\frac{1}{72}$ of an inch. We shall refer to this default unit as a 'PostScript point' or 'big point' (bp) to distinguish it from the 'standard printer's point' (pt), which is $\frac{1}{72.27}$ of an inch. Other units of measure include in for inches, cm for centimeters, and mm for millimeters. For example,
draw $(0,0)--(1 \mathrm{~cm}, 0)--(1 \mathrm{~cm}, 1 \mathrm{~cm})--(0,1 \mathrm{~cm})--(0,0)$;
generates a square with edges of size 1 cm . Here, 1 cm is shorthand for $1 * \mathrm{~cm}$. You may use 0 instead of 0 cm because cm is just a conversion factor and 0 cm just multiplies the conversion factor by zero.

EXERCISE 3
 Create a METAPOST file, say exercise3.mp, that generates a circle of

 diameter 2 cm using the fullcircle graphic object.
EXERCISE 4

1. Create a METAPOST file, say exercise4.mp, that generates an equilateral triangle with edges of size 2 cm .
2. Extend the METAPOST document such that it generates in a separate file the PostScript code of an equilateral triangle with edges of size 3 cm .

EXERCISE 5

Define your own unit, say 0.5 cm , by the statement $u=0.5 \mathrm{~cm}$; and use this unit u to generate a regular hexagon with edges of size 2 units.

EXERCISE 6

Create the following two pictures:

2.4 Numeric Quantities

Numeric quantities in METAPOST are represented in fixed point arithmetic as integer multiples of $\frac{1}{65536}=2^{-16}$ and with absolute value less or equal to $4096=2^{12}$. Since METAPOST uses fixed point arithmetic, it does not understand exponential notation such as 1.23E4. It would interpret this as the real number 1.23 , followed by the symbol E , followed by the number 4. Assignment of numeric values can be done with the usual := operator. Numeric values can be shown via the show command.

EXERCISE 7

1. Create a METAPOST file, say exercise7.mp, that contains the following code
```
numeric p,q,n;
n := 11;
p := 2**n;
q := 2**n+1;
show p,q;
end;
```

Find out what the result is when you run the above METAPOST program.
2. Replace the value of n in the above METAPOST document by 12 and see what happens in this case (Hint: press Return to get processing as far as possible). Explain what goes wrong.
3. Insert at the top of the current METAPOST document the following line and see what happens now when you process the file.

```
warningcheck := 0;
```

The numeric data type is used so often that it is the default type of any non-declared variable. This explains why $\mathrm{n}:=10$; is the same as numeric n ; $\mathrm{n}:=10$; and why you cannot enter $\mathrm{p}:=(0,0)$; nor $\mathrm{p}=(0,0)$; to define the point, but must use pair $\mathrm{p} ; \mathrm{p}:=(0,0)$; or pair $\mathrm{p} ; \mathrm{p}=(0,0)$;

2.5 If Processing Goes Wrong

If you make a mistake in the source file and METAPOST cannot process your document without any trouble, the code generation process is interrupted. In the following exercise, you will practice the identification and correction of errors.

EXERCISE 8 Deliberately make the following typographical error in the source file

 example.mp. Change the line$$
\text { draw }(0,0)--(10,0)--(10,10)--(0,10)--(0,0) \text {; }
$$

into the following two lines

```
draw (0,0)--(10,0)--(10,10)
draw (10,10)-- (0,10)-- (0,0);
```

1. Try to process the document. METAPOST will be unable to do this and the processing would be interrupted. The terminal window where you entered the mpost command looks like:
```
(example.mp ! Extra tokens will be flushed. <to be read again>
                        addto
draw->addto
    .currentpicture.if.picture(EXPRO):also(EXPRO)else:doublepath(EXPR...
<to be read again>
                                    ;
1.3 draw (10,10)--(0,10)--(0,0);
?
```

In a rather obscure way, the METAPOST program notifies the location where it signals that something goes wrong, viz., at line number 3. However, this does not mean that the error is necessarily there.
2. There are several ways to proceed after the interrupt. Enter a question mark and you see your options:
? ?
Type <return> to proceed, S to scroll future error messages,
R to run without stopping, Q to run quietly,
I to insert something, E to edit your file,
1 or ... or 9 to ignore the next 1 to 9 tokens of input, H for help, X to quit.
?
3. Press Return. LATEX will continue processing and tries to make the best of it. Logging continues:
[1])
1 output file written: example. 1
Transcript written on example.log.
4. Verify that only the following path is generated:

```
newpath 0 0 moveto
10 0 lineto
10 10 lineto stroke
```

5. Format the METAPOST document again, but this time enter the character e. Your default editor will be opened and the cursor will be at the location where METAPOST spotted the error. Correct the source file ${ }^{4}$, i.e., add a semicolon at the right spot, and give the METAPOST processing another try.
[^2]
3 Basic Graphical Primitives

In this section you will learn how to build up a picture from basic graphical primitives such as points, lines, and text objects.

3.1 Pair

The pair data type is represented as a pair of numeric quantities in METAPOST. On the one hand, you may think of a pair, say $(1,2)$, as a location in two-dimensional space. On the other hand, it represents a vector. From this viewpoint, it is clear that you can add or subtract two pairs, apply a scalar multiplication to a pair, and compute the dot product of two pairs.
You can render a point (x, y) as a dot at the specified location with the statement
draw (x, y);
Because the drawing pen has by default a circular shape with a diameter of 1 PostScript point, a hardly visible point is rendered. You must explicitly scale the drawing pen to a more appropriate size, either locally in the current statement or globally for subsequent drawing statements. You can resize the pen for example with a scale factor 4 by

```
draw (x,y) withpen pencircle scaled 4; % temporary change of pen
```

or by
pickup pencircle scaled 4; \% new drawing pen is chosen
draw (x,y);

EXERCISE 9

Explain the following result:

```
O}\mathrm{ beginfig(1)
draw unitsquare scaled 70;
draw (10,20);
draw (10,15) scaled 2;
draw (30,40) withpen pencircle scaled 4;
pickup pencircle scaled 8;
draw (40,50);
draw (50,60);
endfig;
end;
```

Assignment of pairs is often not done with the usual := operator, but with the equation symbol $=$. As a matter of fact, METAPOST allows you to use linear equations to define a pair in a versatile way. A few examples will do for the moment.

- Using a name that consists of the character z followed by a number, a statement such as $z 0=(1,2)$ not only declares that the left-hand side is equal to the right-hand side, but it also implies that the variables $x 0$ and $y 0$ exist and are equal to 1 and 2 , respectively. Alternatively, you can assign values to the numeric variable x 1 and y 1 with the result that the pair $(\mathrm{x} 1, \mathrm{y} 1)$ is defined and can be referred to by the name z 1 .
- A statement like

$$
z 1=-z 2=(3,4)
$$

is equivalent to

$$
\begin{aligned}
& z 1=(3,4) ; \\
& z 2=-(3,4)
\end{aligned}
$$

- If two pairs, say z1 and z2, are given, you can define the pair, say z3, right in the middle between these two points by the statement $z 3=1 / 2[z 1, z 2]$.
- When you have declared a pair, say P, then xpart P and ypart P refer to the first and second coordinate of P, respectively. For example,

```
pair P; P = (10,20);
```

is the same as

```
pair P;
xpart P = 10;
ypart P = 20;
```


EXERCISE 10

Verify that when you use a name that begins with z. followed by a sequence of alphabetic characters and/or numbers, a statement such as z.P $=(1,2)$ not only declares that the left-hand side is equal to the right-hand side, but it also implies that the variables x.P and y.P exist and are equal to 1 and 2, respectively. Alternatively, you can assign values to the numeric variable $x . P$ and $y . P$, with the result that the pair ($x . P, y . P$) is defined and can be referred to by the name z.P.

EXERCISE 11

1. Create the following geometrical picture of an acute-angled triangle together with its three medians ${ }^{5}$:

2. The dotlabel command allows you to mark a point with a dot and to position some text around it. For instance, dotlabel.lft("A", $(0,0))$; generates a dot with the label A to the left of the point. Other dotlabel suffices and their meanings are shown in the picture below:

[^3]$$
\underset{\substack{\text { top } \\ \text { lft•rt } \\ \text { bot }}}{\text { ulft. }} \text { lift }{ }^{\text {lort }}
$$

Use the dotlabel command to put labels in the picture in part 1 , so that it looks like

3. Recall that $1 / 2[z 1, z 2]$ denotes the point halfway between the points $z 1$ and $z 2$. Similarly, $1 / 3[z 1, z 2]$ denotes the point on the line connecting the points $z 1$ and $z 2$, one-third away from $z 1$. For a numeric variable, which is possibly unknown yet, $c[z 1, z 2]$ is c times of the way from $z 1$ to - $z 2$-. If you do not want to waste a name for a variable, use the special name whatever to specify a general point on a line connecting two given points:

```
whatever[z1,z2];
```

denotes some point on the line connecting the points $z 1$ and $z 2$. Use this feature to define the intersection point of the medians, also known as the center of gravity, and extend the above picture to the one below. Use the label command, which is similar to the dotlabel command except that it does not draw a dot, to position the character G around the center of gravity. If necessary, assign labeloffset another value so that the label is further away from the center of gravity.

EXERCISE 12

The dir command is a simple way to define a point on the unit circle. For example, $\operatorname{dir}(30)$; generates the pair $(0.86603,0.5)\left(=\left(\frac{1}{2} \sqrt{3}, \frac{1}{2}\right)\right)$. Use the dir command to generate a regular pentagon.

EXERCISE 13

Use the dir command to draw a line in northwest direction through the point $(1,1)$ and a line segment through this point that makes an angle of 30 degrees with the line. Your picture should look like

3.2 Path

3.2.1 Open and Closed Curves

METAPOST can draw straight lines as well as curved ones. You have already seen that a draw statement with points separated by -- draws straight lines connecting one point with another. For example, the result of

```
draw p0--p1--p2;
```

after defining three points by

```
pair p[]; p0 = (0,0); p1 = (2cm,3cm); p2 = (3cm, 2cm);
```

is the following picture.

Closing the above path is done either by extending it with --z0 or by connecting the first and last point via the cycle command. Thus, the path p0--p1--p2--cycle, when drawn, looks like

The difference between these two methods is that the path extension with the starting point only has the optical effect of closing the path. This means that only with the cycle extension it really becomes a closed path.

EXERCISE 14

Verify that you can only fill the interior of a closed curve with some color or shade of gray, using the fill command, when the path is really closed with the cycle command. The gray shading is obtained by the directive withcolor $c *$ white, where c is a number between 0 and 1 .

3.2.2 Straight and Curved Lines

Compare the pictures from the previous subsection with the following ones, which show curves ${ }^{6}$ through the same points.

	```u := 1cm; pair p[]; p0 = (0,0); p1 = (2u,3u); p2 = (3u,2u); beginfig(1); draw p0..p1..p2; % draw open curve for i=0 upto 2: draw p[i] withpen pencircle scaled 3; endfor; % draw defining points endfig;```
	```beginfig(2); draw p0..p1..p2..cycle; % draw closed curve for i=0 upto 2: draw p[i] withpen pencircle scaled 3; endfor; % draw defining points endfig; end;```

Just use -- where you want straight lines and . . where you want curves.
beginfig(1);
$u \quad==1 \mathrm{~cm} ;$
pair $p[] ;$
$\mathrm{p} 0=(0,0) ; \mathrm{p} 1=(2 \mathrm{u}, 3 \mathrm{u}) ; \mathrm{p} 2=(3 \mathrm{u}, 2 \mathrm{u}) ;$
draw $\mathrm{p} 0-\mathrm{p} 1 \ldots \mathrm{p} 2 \ldots \mathrm{cycle} ;$
for $\mathrm{i}=0$ upto $2:$
draw $\mathrm{p}[\mathrm{i}]$ withpen pencircle scaled $3 ;$
endfor;
endfig;
end;

3.2.3 Construction of Curves

When METAPOST draws a smooth curve through a sequence of points, each pair of consecutive points is connected by a cubic Bézier curve, which needs, in order to be determined, two intermediate control points in addition to the end points. The points on the curved segment from points p_{0} to p_{1} with post control point c_{0} and pre control point c_{1} are determined by the formula

$$
p(t)=(1-t)^{3} p_{0}+3(1-t)^{2} t c_{0}+3(1-t) t^{2} c_{1}+t^{3} p_{1}
$$

where $t \in[0,1]$. METAPOST automatically calculates the control points such that the segments have the same direction at the interior knots. In the figure below, the additional

[^4]control points are drawn as gray dots and connected to their parent point with gray line segments. The curve moves from the starting point in the direction of the post control point, but possibly bends after a while in another direction. The further away the post control point is, the longer the curve keeps this direction. Similarly, the curve arrives at a point coming from the direction of the pre control point. The further away the pre control point is, the earlier the curve gets this direction. It is as if the control points pull their parent point in a certain direction and the further away a control point is, the stronger it pulls. By default in METAPOST, the incoming and outgoing direction at a point on the curve are the same so that the curve is smooth.

	```u := 1.25cm; color gray; gray := 0.6white; pair p[]; p0 = (0,0); p1 = (2u,3u); p2 = (3u,2u); def drawpoint(expr z, c) = draw z withpen pencircle scaled 3 withcolor c;```
	```beginfig(1); path q; q := p0..p1..p2; for i=0 upto length(q): drawpoint(point i of q, black); p3 := precontrol i of q; p4 := postcontrol i of q; draw p3--p4 withcolor gray; drawpoint(p3, gray); drawpoint(p4, gray); endfor; draw q; endfig;```
	```beginfig(2); path q; q := p0..p1..p2..cycle; for i=O upto length(q): drawpoint(point i of q, black); p3 := precontrol i of q; p4 := postcontrol i of q; draw p3--p4 withcolor gray; drawpoint(p3, gray); drawpoint(p4, gray); endfor; draw q; endfig; end;```

Do not worry when you do not understand all details of the above METAPOST program. It contains features and programming constructs that will be dealt with later in the tutorial.

There are various ways of controlling curves:

- Vary the angles at the start and end of the curve with one of the keywords up, down, left, and right, or with the dir command.
- Specify the requested control points manually.
- Vary the inflection of the curve with tension and curl. tension influences the curvature, whereas curl influences the approach of the starting and end points.

```
pair p[] ; \(\mathrm{p} 0:=(0,0)\); \(\mathrm{p} 1:=(1 \mathrm{~cm}, 1 \mathrm{~cm})\);
def drawsquare = draw unitsquare
 scaled 1 cm withcolor 0.7 white;
enddef;
```


beginfig(1);
drawsquare; drawarrow p0..p1;
endfig;
beginfig(2);
drawsquare; drawarrow pO\{right\}..p1;
endfig;

beginfig(3);
drawsquare; drawarrow p0\{up\}..p1;
endfig;

beginfig(4);
drawsquare; drawarrow p0\{left\}..p1;
endfig;

beginfig(5);
drawsquare; drawarrow p0\{down\}..p1;
endfig;

beginfig(6);
drawsquare; drawarrow pO\{dir(-45)\}..p1;
endfig;

beginfig(7);
drawsquare; drawarrow p0..
controls ( $0,1 \mathrm{~cm}$ ) and ( $1 \mathrm{~cm}, 0$ ) ..p1;
endfig;

	```beginfig(8); drawsquare; drawarrow p0{curl 80}.. (0,-1cm)..{curl 8}p1; endfig;```
	```beginfig(9); drawsquare; drawarrow p0..tension(2) ..(0,1cm)..p1; endfig; end;```

The METAPOST operators --, ---, and ... have been defined in terms of curl and tension directives as follows:

```
def -- = {curl 1}..{curl 1} enddef;
def --- = .. tension infinity .. enddef;
def ... = .. tension atleast 1 .. enddef;
```

The meaning of $\ldots$ is "choose an inflection-free path between the points unless the endpoint directions make this impossible". The meaning of --- is "get a smooth connection between a straight line and the rest of the curve".

```
pair p[] ; \(\mathrm{p} 0:=(0,0)\); \(\mathrm{p} 1:=(1 \mathrm{~cm}, 1 \mathrm{~cm})\);
def drawsquare \(=\) draw unitsquare scaled 1 cm
 withcolor 0.7 white;
enddef;
beginfig(1);
drawsquare; drawarrow p0---(1.5cm,0)..p1;
endfig;
beginfig(2);
drawsquare; drawarrow p0...(1.5cm,0)..p1;
endfig;
end;
```



The above examples were also meant to give you the impression that you can draw in METAPOST almost any curve you wish.

## EXERCISE 15

Draw an angle of 40 degrees that looks like



## EXERCISE 17

Draw the Yin-Yang symbol ${ }^{7}$ that looks like


### 3.3 Angle and Direction Vector

In a previous exercise you have already seen that the dir command generates a pair that is a point on the unit circle at a given angle with the horizontal axis. The inverse of dir is angle, which takes a pair, interprets it as a vector, and computes the two-argument arctangent, i.e., it gives the angle corresponding with the vector. In the example below we use it to draw a bisector of a triangle.


```
pair A, B, C, C';
u := 1cm; A= (0,0); B=(5u,0); C=(2u,3u);
C' = whatever [A,B] = C + whatever*dir(
 1/2*angle(A-C)+1/2*angle(B-C));
beginfig(1)
draw A--B--C--cycle; draw C--C';
dotlabel.lft("A",A); dotlabel.urt("B",B);
dotlabel.top("C",C); dotlabel.bot("C'",C');
endfig;
end;
```


## EXERCISE 18

Change the above picture to the following geometrical diagram, which illustrates better that a bisector is actually drawn for the acute-angled triangle.


## EXERCISE 19

Draw a picture that shows all the bisectors of a acute-angled triangle. Your picture should look like


[^5]In this way, it illustrates that the bisectors of a triangle go through one point, the so-called incenter, which is the center of the inner circle of the triangle.

### 3.4 Arrow

The drawarrow command draws the given path with an arrowhead at the end. For doubleheaded arrows, simply use the drawdblarrow command. A few examples:
beginfig(1);

drawarrow $(0,0)--(60,0) ;$
drawarrow reverse $(0,-20)--(60,-20))$
withpen pencircle scaled 2; ;
drawdblarrow $(0,-40)--(60,-40) ;$
drawarrow $(0,-65)\{\operatorname{dir}(30)\} \ldots$
\{dir $(-30)\}(60,-65) ;$
drawarrow $(0,-90)\{\operatorname{dir}(-30)\} \ldots\{u p\}(60,-90) \ldots$
$\{\operatorname{dir}(-150)\} \operatorname{cycle;}$

endfig;
end;

If you want arrowheads of different size, you can change the arrowhead length through the variable ahlength (4bp by default) and you can control the angle at the tip of the arrowhead with the variable ahangle ( 45 degrees by default). You can also completely change the definition of the arrowhead procedure. In the example below, we draw a curve with an arrow symbol along the path. As a matter of fact, the path is drawn in separate pieces that are joined together with the \& operator.


### 3.5 Circle, Ellipse, Square, and Rectangle

You have already seen that you can draw a circle through three points $z 0, z 1$, and $z 2$, that do not lie on a straight line with the statement draw $z 0 \ldots z 1 . . z 2 . . c y c l e ;$. But METAPOST also provides predefined paths to build circles and circular disks or parts of them. Similarly, you can draw a rectangle once the four corner points, say $\mathbf{z 0}, \mathrm{z} 1, \mathrm{z} 2$, and z 3 , are known with the
statement draw z0--z1--z2--z3--cycle;. The path $(0,0)--(1,0)--(1,1)--(0,1)--c y c l e$ is in METAPOST predefined as unitsquare.

Path	Definition
fullcircle	circle with diameter 1 and center $(0,0)$.
halfcircle	upper half of fullcircle
quartercircle	first quadrant of fullcircle
unitsquare	$(0,0)--(1,0)--(1,1)--c y l e$

You can construct from these basic paths any circle, ellipse, square, or rectangle by rotating (rotated operator), by scaling (operators scaled, xscaled, and yscaled), and/or by translating the graphic object (shifted operator). Keep in mind that the ordering of operators has a strong influence on the final shape. But pictures say more than words. The diagram

is drawn with the following METAPOST code.

```
beginfig(1);
u := 24; % 24 = 24bp = 1/3 inch
for i=-1 upto 9: draw (i*u,4u)--(i*u,-3u) withcolor 0.7white; endfor;
for i=-3 upto 4: draw (-u,i*u)--(9u,i*u) withcolor 0.7white; endfor;
dotlabel("",origin); % the grid with reference point (0,0) has been drawn
draw fullcircle scaled u;
draw halfcircle scaled u shifted (2u,0);
draw quartercircle scaled u shifted (4u,0);
draw fullcircle xscaled 2u yscaled u shifted (}6u,0\mathrm{);
draw fullcircle xscaled 2u yscaled u rotated -45 shifted (8u,0);
fill fullcircle scaled u shifted (0,-2u);
fill halfcircle--cycle scaled u shifted (2u,-2u);
path quarterdisk; quarterdisk := quartercircle--origin--cycle;
fill quarterdisk scaled u shifted (4u,-2u);
fill quarterdisk scaled u rotated -45 shifted (6u,-2u);
fill quarterdisk scaled u shifted (6u,-2u) rotated 45;
fill quarterdisk rotated -90 scaled 2u shifted (8u,3u);
fill unitsquare scaled u shifted (0,2u);
```

```
fill unitsquare xscaled u yscaled 3/2u shifted (2u,2u);
endfig;
end;
```


### 3.6 Text

You have already seen how the dotlabel command can be used to draw a dot and a label in the neighborhood of the dot. If you do not want the dot, simply use the label command:
label.suffix (string expression, pair) ;
It uses of the same suffices as the dotlabel command to position the label relative to the given pair. No suffix means that the label is printed at the specified location. The directives rt (right), urt (upper right), top (top), ulft (upper left), lft (left), llft (lower left), bot (bottom), lrt (lower right) can be used to specify the relative position of the label to the given pair. The distance from the pair to the label is set by the numeric variable labeloffset.

The commands label and dotlabel both use a string expression for the label text and typeset it in the default font, which is likely to be "cmr10" and which can changed through the variables defaultfont and defaultscale. For example,

```
defaultfont := "tir";
defaultscale := 12pt/fontsize(defaultfont);
```

makes labels come out as Adobe Times-Roman at about 12 points.
Until now the string expression in a text command has only been a string delimited by double quotes (optionally joined to another string via the concatenation operator \&). But you can also bracket the text with btex and etex (do not put it in quotes this time) and pass it to $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ for typesetting. This allows you to use METAPOST in combination with $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ for building complex labels. Let us begin with a simple example:

beginfig(1);
beginfig(1);
z0 = (0,0); z1 = (sqrt (3)*cm,0);
z0 = (0,0); z1 = (sqrt (3)*cm,0);
z2 = (sqrt(3)*cm,1 cm);
z2 = (sqrt(3)*cm,1 cm);
draw z0--z1--z2--cycle;
draw z0--z1--z2--cycle;
label.bot(btex $\sqrt{3}$ etex, 1/2[z0,z1]);
label.bot(btex $\sqrt{3}$ etex, 1/2[z0,z1]);
label.rt(btex 1 etex, 1/2[z1,z2]);
label.rt(btex 1 etex, 1/2[z1,z2]);
label.top(btex 2 etex, 1/2[z0,z2]);
label.top(btex 2 etex, 1/2[z0,z2]);
endfig;
endfig;
end;
end;

Whenever the METAPOST program encounters btex typesetting commands etex, it suspends the processing of the input in order to allow $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ to typeset the commands and the dvitomp preprocessor to translate the typeset material into a picture expression that can be used in a label or dotlabel statement. The generated low level METAPOST code is placed in a file with extension.$m p x$. Hereafter METAPOST resumes its work.

We speak about a picture expression that is created by typesetting commands because it is a graphic object to which you can apply transformation. This is illustrated by the following example, in which we use diagonal curly brackets and text.
beginfig(1);
$z 0=(0,0) ; \quad z 1=(\operatorname{sqrt}(3) * \mathrm{~cm}, 0) ;$
$\mathrm{z} 2=(\operatorname{sqrt}(3) * \mathrm{~cm}, 1 \mathrm{~cm})$;
draw z0--z1--z2--cycle;
label.bot(btex \$ ${ }^{\text {librace\$ }}$ etex rotated 90
xscaled 5 yscaled 1.4, 1/2[z0,z1]);
label.rt((btex \$\rbrace\$ etex) xscaled 1.3
yscaled 3, 1/2[z1,z2]);
label (btex \$\lbrace\$ etex xscaled 1.5 yscaled 5.7
rotated $-60,1 / 2[z 0, z 2]+\operatorname{dir}(120) * 2 \mathrm{~mm})$;
labeloffset: $=3.5 \mathrm{~mm}$;
label.bot (btex $\$ \backslash \operatorname{sqrt}\{3\} \$$ etex, $1 / 2[z 0, z 1]$ );
label.rt(btex 1 etex, $1 / 2[z 1, z 2])$;
label(btex 2 etex, $1 / 2[z 0, z 2]+\operatorname{dir}(120) * 5 \mathrm{~mm}$ );
endfig;
end;

Until now we have only used plain $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ commands. But what if you want to run another TEX-version? The following example shows how you can use a verbatimtex. . . . etex block to specify that $\mathrm{AA}_{\mathrm{E}} \mathrm{X}$ is used and which style and/or packages are chosen.


```
verbatimtex
%&latex
\documentclass{article}
\begin{document}
etex
beginfig(1);
z0 = (0,0); z1 = (sqrt(3)*cm,0);
z2 = (sqrt(3)*cm,1cm);
draw z0--z1--z2--cycle;
label.bot(btex $\sqrt{3}$ etex, 1/2[z0,z1]);
label.rt(btex $\frac{1}{2}$ etex, 1/2[z1,z2]);
label.top(btex 1 etex, 1/2[z0,z2]);
endfig;
end;
```

One last remark about using $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ : Between btex and etex, you cannot use displayed math mode such as $\$ \$ \backslash f r a c\{x\}\{x+1\} \$ \$$. You must use $\$ \backslash$ displaystyle $\backslash f r a c\{x\}\{x+1\} \$$ instead.

Let us use what we have learned so far in this chapter in a more practical example, viz., drawing the graph of the function $x \mapsto \frac{e^{x}}{1+x}$ from 0 to 5 with the vertical axis in a logarithmic scale. The picture looks as follows:


It is generated by the following METAPOST code:

```
verbatimtex
%&latex
\documentclass{article}
\begin{document}
etex
% some function definitions
vardef exp(expr x) = (mexp(256)**x) enddef;
vardef ln(expr x) = (mlog(x)/256) enddef;
vardef log(expr x) = (ln(x)/ln(10)) enddef;
vardef f(expr x) = (exp(x)/(1+x)) enddef;
ux := 1cm; uy := 4cm;
beginfig(1)
numeric xmin, xmax, ymin, ymax;
xmin := 0; xmax := 6;
ymin := 0; ymax := 2;
% draw axes
draw (xmin,0)*ux -- (xmax+1/2,0)*ux;
draw (0,ymin)*uy -- (0,ymax+1/10)*uy;
% draw tickmarks and labels on horizontal axis
for i=0 upto xmax:
 draw (i,-0.05)*ux--(i,0.05)*ux;
 label.bot(decimal(i),(i,0)*ux);
endfor;
```

```
% draw tickmarks and labels on vertical axis
for i=2 upto 10:
 draw (-0.01,log(i))*uy--(0.01,log(i))*uy;
 draw (-0.01,log(10*i))*uy--(0.01,log(10*i))*uy;
endfor;
for i=0 upto 2: label.lft(decimal(10**i), (0,i)*uy); endfor;
for i=0 upto 1: label.lft(decimal(5*(10**i)), (0,log(5*(10**i)))*uy); endfor;
% compute and draw the graph of the function
xinc := 0.1;
path pts_f;
pts_f := (xmin*ux,log(f(xmin))*uy)
 for x=xmin+xinc step xinc until xmax:
 .. (x*ux,log(f(x))*uy)
 endfor;
draw pts_f withpen pencircle scaled 2;
% draw title
label(btex graph of $\displaystyle x\mapsto\frac{e^x}{1+x}$ etex, (2ux,1.7uy));
% draw axis explanation
labeloffset := 0.5cm;
label.bot(btex linear scale etex, (3,0)*ux);
label.lft(btex logarithmic scale etex rotated(90), (0,1)*uy);
endfig;
end;
```

The above code needs some explanation.
First of all, METAPOST does not know about the exponential or logarithmic function. But you can easily define these functions with the help of the built-in functions mepx $(x)=\exp (x / 256)$ and $\operatorname{mlog}(x)=256 \ln x$. Note that we have reserved the name log for the logarithm with base 10 in the above program.

As you will see later in this tutorial, METAPOST has several repetition control structures. Here we apply the for loop to draw tick marks and labels on the axes and to compute the path of the graph. The basic form is:

```
for counter = start step stepsize until finish :
 loop text
endfor;
```

Instead of step 1 until, you may use the keyword upto. downto is another word for step -1 until.

In the following code snippet

```
for i=O upto xmax:
 draw (i,-0.05)*ux--(i,0.05)*ux;
 label.bot(decimal(i), (i,0)*ux);
endfor;
```

the input lines are two statements, viz., one to draw tick marks and the other to put a label. We use the decimal command to convert the numeric variable i into a string so that we can use it in the label statement. The following code snippet

```
pts_f := (xmin*ux, log(f(xmin))*uy)
 for x=xmin+xinc step xinc until xmax:
 .. (x*ux,log(f(x))*uy)
 endfor;
```

shows that you can also use the for loop to build up a single statement. The input lines within the for loop are pieces of a path definition. This mode of creating a statement may look strange at first sight, but it is an opportunity given by the fact that METAPOST consists more or less of two part, viz., a preprocessor and a PostScript generator. The preprocessor only reads from the input stream and prepares input for the PostScript generator.

## EXERCISE 20

Draw the graph of the function $x \mapsto \sqrt{x}$ on the interval $(0,2)$. Your picture should look like


Your METAPOST code should be such that only a minimal change in the code is required to draw the graph on a different domain, say $[0,3]$.

## EXERCISE 21

Draw the following picture in METAPOST. The dashed lines can be drawn by adding dashed evenly at the end of the draw statement.


## EXERCISE 22

The annual beer consumption in the Netherlands in the period 1980-2000
is listed below.

year	1980	1985	1990	1995	2000
liter	86	85	91	86	83

Draw the following graph in METAPOST.


## 4 Style Directives

In this section we explain how you can alter the appearance of graphics primitives, e.g., allowing certain lines to be thicker and others to be dashed, using different colors, and changing the type of the drawing pen.

### 4.1 Dashing

Examples show you best how the specify a dash pattern when drawing a line or curve.

```
beginfig(1);
path p; p := (0,0)-- (102,0);
def drawit (suffix p)(expr pattern) =
 draw p dashed pattern;
 p := p shifted (0,-13);
enddef;
drawit(p, withdots);
drawit(p, withdots scaled 2);
drawit(p, evenly);
drawit(p, evenly scaled 2);
drawit(p, evenly scaled 4);
drawit(p, evenly scaled 6);
p := (0,-150)--(102,-150);
def shiftit (suffix p)(expr s) =
 draw p dashed evenly scaled 4 shifted s;
 dotlabel("",point 0 of p);
 dotlabel("",point 1 of p);
 p := p shifted (0,-13);
enddef;
shiftit(p, (0,0));
shiftit(p, (4bp,0));
shiftit(p, (8bp,0));
shiftit(p, (12bp,0));
shiftit(p, (16bp,0));
shiftit(p, (20bp,0));
```

	picture dd; dd :=   dashpattern (on $6 b p$ off $2 b p$ on $2 b p$ off $2 b p$ );   draw $(0,-283)--(102,-283)$ dashed dd;   draw $(0,-296)--(102,-296)$ dashed dd scaled 2 endfig;
	end;

In general, the syntax for dashing is
draw path dashed dash pattern;
You can define a dash pattern with the dashpattern function whose argument is a sequence of on/off distances. Predefined patterns are:

```
evenly = dashpattern(on 3 off 3); % equal length dashes
withdots = dashpattern(off 2.5 on 0 off 2.5); % dotted lines
```


### 4.2 Coloring

The color data type is represented as a triple ( $r, g, b$ ) that specifies a color in the RGB color system. Each of $r, g$, and $b$ must be a number between 0 and 1 , inclusively, representing fractional intensity of red, green, or blue, respectively. Predefined colors are:

```
red = (1,0,0); green = (0,1,0); blue = (0,0,1);
black = (0,0,0); white = (1,1,1);
```

A shade of gray can be specified most conveniently by multiplying the white color with some scalar between 0 and 1 . The syntax of using a color in a graphic statement is:

## withcolor color expression;

Let us draw two color charts:


```
beginfig(1);
u := \(1 / 2 \mathrm{~cm}\);
defaultscale := 10pt/fontsize(defaultfont);
beginfig(1);
path sqr; sqr := unitsquare scaled u;
for i=0 upto 10:
label.bot (decimal (i/10), ((i+1/2)*u,0));
label.lft(decimal(i/10), (\(0,(i+1 / 2) * u))\);
for \(j=0\) upto 10: fill sqr shifted (i*u,j*u) withcolor (\(i * 0.1, j * 0.1,0\)) ; draw sqr shifted (i*u,j*u); \% draw grid endfor;
endfor;
label.bot("r", (6u,-2/3u));
label.lft("g", (-u,6u));
label.top("RGB(r,g,0)", (6u,11u));
endfig; end;
```

```
beginfig(2);
draw (-u,-u)--(11u,-u)--(11u,u)--(-u,u)
 --cycle; % bounding box
pickup pencircle scaled 1/2u;
for i=0 upto 10:
 draw (i*u,0) withcolor i*0.1*white;
endfor;
endfig;
end;
```


## EXERCISE 23

Compare the linear conversion from color to gray, defined by the function

$$
(r, g, b) \mapsto \frac{(r+g+b)}{3} \times(1,1,1)
$$

with the following conversion formula used in black and white television:

$$
(r, g, b) \mapsto(0.30 r+0.59 g+0.11 b) \times(1,1,1)
$$

### 4.3 Specifying the Pen

In METAPOST you can define your drawing pen for specifying the line thickness or for calligraphic effects. The statement

```
draw path withpen pen expression;
```

causes the chosen pen to be used to draw the specified path. This is only a temporary pen change. The statement

## pickup pen expression;

causes the given pen to be used in subsequent draw statements. The default pen is circular with a diameter of 0.5 bp . If you want to change the line thickness, simply use the following pen expression:

```
pencircle scaled numeric expression;
```

You can create an elliptically shaped and rotated pen by transforming the circular pen. An example:


```
beginfig(1);
pickup pencircle xscaled 2bp yscaled 0.25bp
 rotated 60 withcolor red;
for i=10 downto 1:
 draw 5(i,0)..5(0,i)..5(-i,0)
 ..5(0,-i+1)..5(i-1,0);
endfor;
endfig;
end;
```

In the following example we define a triangular shaped pen. It can be used to plot data points as triangles instead of dots. For comparison we draw a large triangle with both the triangular and the default circular pen.


```
beginfig(1);
path p; p := dir(-30)--dir(90)--dir(210)--cycle;
pen pentriangle;
pentriangle := makepen(p);
draw origin withpen pentriangle scaled 2;
draw (p scaled 1cm) withpen pentriangle scaled 4;
draw (p scaled 2cm) withpen pencircle scaled 8;
endfig;
end;
```


### 4.4 Setting Drawing Options

The function drawoptions allows you to change the default settings for drawing. For example, if you specify

```
drawoptions(dashed evenly withcolor red);
```

then all draw statements produce dashed lines in red color, unless you overrule the drawing setting explicitly. To turn off drawoptions all together, just give an empty list:

```
drawoptions();
```

As a matter of fact, this is done automatically by the beginfig macro.

## 5 Transformations

A very characteristic technique with METAPOST, which we applied already in many of the previous examples, is creating a graphic and then using it several times with different transformations. METAPOST has the following built-in operators for scaling, rotating, translating, reflecting, and slanting:

$$
\begin{aligned}
(x, y) \text { shifted }(a, b)= & (x+a, y+b) \\
(x, y) \text { rotated }(\theta)= & (x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta) \\
(x, y) \text { rotatedaround }((a, b), \theta)= & (x \cos \theta-y \sin \theta+a(1-\cos \theta)+b \sin \theta \\
& x \sin \theta+y \cos \theta+b(1-\cos \theta)-a \sin \theta) \\
(x, y) \text { slanted } a= & (x+a y, y) \\
(x, y) \text { scaled } a= & (a x, a y) \\
(x, y) \text { xscaled } a= & (a x, y) \\
(x, y) \text { yscaled } a= & (x, a y) ; \\
(x, y) \text { zscaled }(a, b)= & (a x-b y, b x+a y)
\end{aligned}
$$

The effect of the translation and most scaling operations is obvious. The following playful example, in which the formula $e^{\pi i}=-1$ is drawn in various shapes, serves as an illustration of most of the listed transformations.

$$
\begin{aligned}
& \\
& e^{\pi i}=-1 \\
& e^{\pi i}=-1 \\
& e^{\pi i}=-1
\end{aligned}
$$

beginfig(1);
pair s; s=(0,-2cm);
def drawit (expr p) =
draw p shifted s; s := s shifted ( $0,-2 \mathrm{~cm}$ );
enddef;
picture pic;
draw btex \$e^\{\pi i\}=-1\$ etex;
draw bbox currentpicture withcolor 0.6white;
pic := currentpicture;
draw pic shifted ( $1 \mathrm{~cm},-1 \mathrm{~cm}$ );
pic := pic scaled 1.5; drawit(pic);
\% work with the enlarged base picture
$\mathrm{I}-={ }_{\ell{ }_{\ell}{ }^{2} \quad \text { drawit(pic scaled -1); }}$
drawit(pic rotated 30);
$e^{\pi i}=-1 \quad$ drawit(pic slanted 0.5);
$e^{\pi i}=-1 \quad$ drawit (pic slanted -0.5 );
$e^{\boldsymbol{\pi} \boldsymbol{i}}=-1$ drawit(pic xscaled 2);
$\sigma_{\Perp \subseteq}=-J \quad$ drawit (pic yscaled -1 );

drawit(pic zscaled (2, -0.5));
endfig;
end;

The effect of rotated $\theta$ is rotation of $\theta$ degrees about the origin counter-clockwise. The transformation rotatedaround $(p, \theta)$ rotates $\theta$ degrees counter-clockwise around point $p$. Accordingly, it is defined in METAPOST as follows:

```
def rotatedaround(expr p, theta) = % rotates theta degrees around p
 shifted -p rotated theta shifted p enddef;
```

When you identify a point $(x, y)$ with the 3 -vector $\left(\begin{array}{l}x \\ y \\ 1\end{array}\right)$, each of the above operations is described by an affine matrix. For example, the rotation of $\theta$ degrees around the origin counter-clockwise and the translation with $(a, b)$ have the following matrices:

$$
\operatorname{rotated}(\theta)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right), \quad \operatorname{translated}(a, b)=\left(\begin{array}{ccc}
1 & 0 & a \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right) .
$$

It is easy to verify that

$$
\text { rotatedaround }((a, b), \theta)=\left(\begin{array}{ccc}
1 & 0 & a \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 0 & -a \\
0 & 1 & -b \\
0 & 0 & 1
\end{array}\right)
$$

The matrix of $\operatorname{zscaled}(a, b)$ is as follows:

$$
\operatorname{zscaled}(a, b)=\left(\begin{array}{ccc}
a & -b & 0 \\
b & a & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Thus, the effect of $\operatorname{zscaled}(a, b)$ is to rotate and scale so as to map $(1,0)$ into ( $a, b$ ). The operation zscaled can also be thought of as multiplication of complex numbers. The picture on the next page illustrates this.

The general form of an affine matrix $T$ is

$$
T=\left(\begin{array}{ccc}
T_{x x} & T_{x y} & T_{x} \\
T_{y x} & T_{y y} & T_{y} \\
0 & 0 & 1
\end{array}\right)
$$

The corresponding transformation in the two-dimensional space is

$$
(x, y) \mapsto\left(T_{x x} x+T_{x y} y+T_{x}, T_{y x} x+T_{y y} y+T_{y}\right)
$$

This mapping is completely determined by the sextuple $\left(T_{x}, T_{y}, T_{x x}, T_{x y}, T_{y x}, T_{y y}\right)$. The information about the mapping can be stored in a variable of data type transform and then be applied in a transformed statement. There are three ways to define a transform:

- In terms of basic transformations. For example,

```
transform T; T = identity shifted (-1,0) rotated 60 shifted (1,0);
```

defines the transformation T as a composition of translating with vector $(-1,0)$, rotating around the origin over 60 degrees, and translating with a vector $(1,0)$.

- Specifying the sextuple $\left(T_{x}, T_{y}, T_{x x}, T_{x y}, T_{y x}, T_{y y}\right)$. The six parameters than define a transformation $T$ can be referred to directly as xpart $T$, ypart $T$, xxpart $T$, xypart $T$, yxpart T, and yypart T. Thus,

```
transform T;
xpart T = ypart T = 1;
xxpart T = yypart T = 0;
xypart T = yxpart T = -1;
```

defines a transformation, viz., the reflection in the line through $(1,0)$ and $(0,1)$.


```
beginfig(1);
pair z; z := (2,1)*cm;
pair w; w := (7/4,3/2)*cm;
pair zw; zw := (z zscaled w) / cm;
draw }(-0.5,0)*cm--(3,0)*cm
draw (0,-0.5)*cm-- (0,5.5)*cm;
draw (1,0)*cm--z; draw (0,0)--z; draw (0,0)--w;
draw (0,0)--zw; draw w--zw;
def drawangle(
 expr endofa, endofb, common, length) =
 save tn; tn :=
 turningnumber(common--endofa--endofb--cycle);
 draw (unitvector(endofa-common){(endofa-common)
 rotated (tn*90)} .. unitvector(endofb-common))
 scaled length shifted common withcolor 0.3white;
enddef;
drawangle((1,0)*cm, z, (0,0), 0.4cm);
drawangle(w, zw, (0,0), 0.4cm);
drawangle((0,0), z, (1,0)*cm, 0.2cm);
drawangle((0,0), z, (1,0)*cm, 0.15cm);
drawangle((0,0), zw, w, 0.2cm);
drawangle((0,0), zw, w, 0.15cm);
label.llft(btex 0 etex,(0cm,0cm));
label.lrt(btex 1 etex,(1cm,0cm));
label.rt(btex z etex, z);
label.rt(btex w etex, w);
label.rt(btex zw etex, zw);
endfig;
end;
```

- Specifying the images of three points. It is possible to apply an unknown transform to a known pair and use the result in a linear equation. For example,

```
transform T;
(1,0) transformed T = (1,0);
(0,1) transformed T = (0,1);
(0,0) transformed T = (1,1);
```

defines the reflection in the line through $(1,0)$ and $(0,1)$.
The built-in transformation reflectedabout ( $\mathrm{p}, \mathrm{q}$ ), which reflects about the line connecting the points p and q , is defined by a combination of the last two techniques:

```
def reflectedabout(expr p,q) = transformed
 begingroup
 transform T_;
 p transformed T_ = p; q transformed T_ = q;
 xxpart T_ = -yypart T_; xypart T_ = yxpart T_; % T_ is a reflection
 T_
 endgroup
enddef;
```

Given a transformation $T$, the inverse transformation is easily defined by inverse ( $T$ ).
We end with another playful example of an iterative graphic process.


```
beginfig(1);
```

beginfig(1);
pair A,B,C; u:=3cm;
pair A,B,C; u:=3cm;
A=u*dir(-30); B=u*dir(90); C=u*dir(210);
A=u*dir(-30); B=u*dir(90); C=u*dir(210);
transform T;
transform T;
A transformed T = 1/6[A,B];
A transformed T = 1/6[A,B];
B transformed T = 1/6[B,C];
B transformed T = 1/6[B,C];
C transformed T = 1/6[C,A];
C transformed T = 1/6[C,A];
path p; p = A--B--C--cycle;
path p; p = A--B--C--cycle;
for i=0 upto 60:
for i=0 upto 60:
draw p; p:= p transformed T;
draw p; p:= p transformed T;
endfor;
endfor;
endfig;
endfig;
end;

```
end;
```


## EXERCISE 24

Using transformations, construct the following picture:


## 6 Advanced Graphics

In this section we deal with fine points of drawing lines and with more advanced graphics. This will allow you to create more professional-looking graphics and more complicated pictures.

### 6.1 Joining Lines

In the last example of the section on pen styles you may have noticed that lines are joined by default such that line joints are normally rounded. You can influence the appearances of the lines by the two internal variables linejoin and linecap. The picture below shows the possibilities.


This picture can be produced by the following METAPOST code

```
beginfig(1);
for i=0 upto 2:
 for j=0 upto 2:
```

```
 z[3i+9j]=(150i, 150j);
 z[3i+9j+1]=(150i+50,150j-50);
 z[3i+9j+2]=(150i+100,150j);
 endfor;
endfor;
drawoptions(withpen pencircle scaled 24 withcolor 0.75white);
linejoin := mitered; linecap := butt; draw z0--z1--z2;
linejoin := mitered; linecap := rounded; draw z3--z4--z5;
linejoin := mitered; linecap := squared; draw z6--z7--z8;
linejoin := rounded; linecap := butt; draw z9--z10--z11;
linejoin := rounded; linecap := rounded; draw z12--z13--z14;
linejoin := rounded; linecap := squared; draw z15--z16--z17;
linejoin := beveled; linecap := butt; draw z18--z19--z20;
linejoin := beveled; linecap := rounded; draw z21--z22--z23;
linejoin := beveled; linecap := squared; draw z24--z25--z26;
%
drawoptions();
for i=0 upto 26: dotlabel.bot(decimal(i), z[i]); endfor;
labeloffset := 25pt; label.bot("linejoin=mitered", z1);
labeloffset := 40pt; label.bot("linecap=butt", z1);
labeloffset := 25pt; label.bot("linejoin=mitered", z4);
labeloffset := 40pt; label.bot("linecap=rounded", z4);
labeloffset := 25pt; label.bot("linejoin=mitered", z7);
labeloffset := 40pt; label.bot("linecap=squared", z7);
%
labeloffset := 25pt; label.bot("linejoin=rounded", z10);
labeloffset := 40pt; label.bot("linecap=butt", z10);
labeloffset := 25pt; label.bot("linejoin=rounded", z13);
labeloffset := 40pt; label.bot("linecap=rounded", z13);
labeloffset := 25pt; label.bot("linejoin=rounded", z16);
labeloffset := 40pt; label.bot("linecap=squared", z16);
%
labeloffset := 25pt; label.bot("linejoin=beveled", z19);
labeloffset := 40pt; label.bot("linecap=butt", z19);
labeloffset := 25pt; label.bot("linejoin=beveled", z22);
labeloffset := 40pt; label.bot("linecap=rounded", z22);
labeloffset := 25pt; label.bot("linejoin=beveled", z25);
labeloffset := 40pt; label.bot("linecap=squared", z25);
%
endfig;
end;
```

By setting the variable miterlimit, you can influence the mitering of joints. The next example demonstrates that the value of this variable acts as a trigger.

```
beginfig(1);
for i=0 upto 2:
```

```
 z[3i]=(150i,0); z[3i+1]=(150i+50,-50); z[3i+2]=(150i+100,0);
endfor;
drawoptions(withpen pencircle scaled 24pt);
labeloffset:= 25pt;
linejoin := mitered; linecap:=butt;
for i=0 upto 2:
 miterlimit := i;
 draw z[3i]--z[3i+1]--z[3i+2];
 label.bot("miterlimit=" & decimal(miterlimit), z[3i+1]);
endfor;
endfig;
end;
```


miterlimit $=0$

miterlimit $=1$

miterlimit=2

### 6.2 Building Cycles

In previous examples you have seen that intersection points of straight lines can be specified by linear equations. A more direct way to deal with path intersection is via the operator intersectionpoint. So, given four points z1, z3, z3, and z4 in general position, you can specify the intersection point $z 5$ of the line between $z 1$ and $z 2$ and the line between $z 3$ and z4 by

```
z5 = z1--z2 intersectionpoint z3--z4;
```

You do not need to rely on setting up linear equations with

```
z5 = whatever[z1,z2] = whatever[z3,z4];
```

The strength of the intersection operator is that it also works for curved lines. We use this operator in the next example of a filled area beneath the graph of a function. The closed curve that forms the border of the filled area is constructed with the buildcycle command. When given two or more paths, the buildcycle macro tries to piece them together so as to form a cyclic path. In case there are more intersection points between paths, the general rule is that

$$
\text { buildcycle }\left(p_{1}, p_{2}, \ldots, p_{n}\right)
$$

chooses the intersection between each $p_{i}$ and $p_{i+1}$ to be as late as possible on the path $p_{i}$ and as early as possible on $p_{i+1}$. In practice, it is more convenient to choose the path arguments such that consecutive ones have a unique intersection.


```
beginfig(1);
```

beginfig(1);
numeric xmin, xmax, ymin, ymax;
numeric xmin, xmax, ymin, ymax;
xmin := 1/4; xmax := 6; ymax := 1/xmin;
xmin := 1/4; xmax := 6; ymax := 1/xmin;
u := 1cm;
u := 1cm;
% compute the graph of the function
% compute the graph of the function
vardef f(expr x) = 1/x enddef;
vardef f(expr x) = 1/x enddef;
xinc := 0.1;
xinc := 0.1;
path pts_f;
path pts_f;
pts_f := (xmin,f(xmin))*u
pts_f := (xmin,f(xmin))*u
for x=xmin+xinc step xinc until xmax:
for x=xmin+xinc step xinc until xmax:
.. (x,f(x))*u
.. (x,f(x))*u
endfor;
endfor;
path hline[], vline[];
path hline[], vline[];
hline0 = (0,0)*u -- (xmax,0)*u;
hline0 = (0,0)*u -- (xmax,0)*u;
vline0 = (0,0)*u -- (0,ymax)*u;
vline0 = (0,0)*u -- (0,ymax)*u;
vline0.5 = (0.5,0)*u -- (0.5,ymax)*u;
vline0.5 = (0.5,0)*u -- (0.5,ymax)*u;
vline4 = (4,0)*u -- (4,ymax)*u;
vline4 = (4,0)*u -- (4,ymax)*u;
fill buildcycle(hline0, vline0.5, pts_f, vline4)
fill buildcycle(hline0, vline0.5, pts_f, vline4)
withcolor 0.8[blue,white];
withcolor 0.8[blue,white];
draw hlineO; draw vline0; % draw axes
draw hlineO; draw vline0; % draw axes
draw (0.5,0)*u -- vline0.5 intersectionpoint pts_f;
draw (0.5,0)*u -- vline0.5 intersectionpoint pts_f;
draw (4,0)*u -- vline4 intersectionpoint pts_f;
draw (4,0)*u -- vline4 intersectionpoint pts_f;
draw pts_f withpen pencircle scaled 2;
draw pts_f withpen pencircle scaled 2;
label.bot(btex $x$ etex, (0.9xmax,0)*u);
label.bot(btex $x$ etex, (0.9xmax,0)*u);
label.lft(btex $y$ etex, (0,0.9ymax)*u);
label.lft(btex $y$ etex, (0,0.9ymax)*u);
label.urt(btex $f(x)$ etex, (0.5,f(0.5))*u);
label.urt(btex $f(x)$ etex, (0.5,f(0.5))*u);
endfig;
endfig;
end;

```
end;
```


## EXERCISE 25

Create the following picture:


### 6.3 Clipping

Clipping is a process to select just those parts of a picture that lie inside an area that is determined by a cyclic path and to discard the portion outside this is area. The command to do this in METAPOST is
clip picture variable to path expression;
You can use it to shade a picture element:
beginfig(1);
pair p[]; path c[];
c0 $=-500 * \operatorname{dir}(40)--500 * \operatorname{dir}(40)$;
for i=0 upto 25:
draw c0 shifted (0,10*i);
draw c0 shifted (0,-10*i);
endfor:
$\mathrm{p} 1=(100,0)$;
c1 $=(-20,0)--(120,0)$;
c2 = p1--(100,infinity);
$c 3=(-20,220)\{\operatorname{dir}(-45)\} . .(120,140)\{$ right $\}$;
c4 $=(0,0)--(0$, infinity $)$;
c5 = buildcycle(c1, c2, c3, c4);
clip currentpicture to c5;
p3 = c4 intersectionpoint c3;
p2 = (100, ypart p3);
draw $(0,0)--p 1--p 2--p 3--c y c l e ;$
draw c1; draw c3 withpen pencircle scaled 2;
endfig;
end;

### 6.4 Dealing with Paths Parametrically

In METAPOST, a path is a continuous curve that is composed of a chain of segments. Each segment is a cubic Bézier curve, which is determined by 4 control points. The points on the curved segment from points $p_{0}$ to $p_{1}$ with post control point $c_{0}$ and pre control point $c_{1}$ are determined by the formula

$$
p(t)=(1-t)^{3} p_{0}+3 t(1-t)^{2} c_{0}+3 t^{2}(1-t) c_{1}+t^{3} p_{1},
$$

where $t \in[0,1]$. If the path consists of two arcs, i.e., consists of three points $p_{0}, p_{1}$, and $p_{2}$, then the time parameter $t$ runs from 0 to 2 . If the path consists of $n$ curve segments, then $t$ runs normally from 0 to $n$. At $t=0$ it starts at point $p_{0}$ and at intermediate time $t=1$ the second point $p_{1}$ is reached; a third point $p_{2}$ in the path, if present, is reached at $t=2$, and so on. You can get the point on a path at any time $t$ with the construction

```
point t of path;
```

For a cyclic path with $n$ arcs through the points $p_{0}, p_{1}, \ldots, p_{n-1}$, the normal parameter range is $0 \leq t<n$, but point $t$ of path can be computed for any $t$ by first reducing $t$ modulo $n$. The number of arcs in a path is available through

```
length(path);
```

The correspondence between the time parameter and a point on the curve is also used to create a subpath of the curve. The command has the following syntax
subpath pair expression of path expression;

If the value of the pair expression is ( $\mathrm{t} 1, \mathrm{t} 2$ ) and the path expression equals p , then the result is a path that follows $p$ from point $t 1$ of $p$ to point $t 2$ of $p$. If $t 1>t 2$, then the subpath runs backward along p .

Based on the subpath operation are the binary operators cutbefore and cutafter. For intersecting paths p 1 and p2,

```
p1 cutbefore p2;
```

is equivalent to

```
subpath(xpart(p1 intersectiontimes p2), length(p1)) of p1;
```

except that it also sets the path variable cuttings to the parts of p1 that gets cut off. With multiple intersections, it tries to cut off as little as possible. Similarly,

```
p1 cutafter p2;
```

tries to cut off the part of p 1 after its last intersection with p 2.
We have seen that for a time parameter $t$ we can find the corresponding point on the curve p by the statement point $t$ of $p$; Another statement, of the general form

```
direction t of path;
```

allows you to obtain a direction vector at the point of the path that corresponds with time $t$. The magnitude of the direction vector is somewhat arbitrary. The directiontime operation is the inverse of the direction of operation. Given a direction vector (a pair) and a path,

```
directiontime direction vector of path;
```

return a numeric value that gives the first time $t$ when the path has the indicated direction.
directionpoint direction vector of path; returns the first point on the path where the given direction is achieved.

The more familiar concept of arc length is also provided for in METAPOST:

```
arclength(path);
```

returns the arc length of the given path. If p is a path and a is a number between 0 and arclength (p), then

```
arctime a of p;
```

gives the time t such that

```
arclength(subpath(0,t) of p) = a;
```

A summary of the path operators is listed in the table below:

Name	Arguments and Result			Meaning
	left	right	result	
arclength	-	path	numeric	arc length of a path.
arctime of	numeric	path	numeric	time on a path where arc length
cutafter	path	path	path	from the start reaches a given value. left argument with part after the intersection dropped.
cutbefore	path	path	path	left argument with part before the intersection dropped.
direction of	numeric	path	path	the direction of a path at a given time.
directionpoint of	pair	path	pair	point where a path has a given direction.
directiontime of	pair	path	numeric	time when a path has a given direction.
intersectionpoint	path	path	pair	an intersection point.
intersectiontimes	path	path	numeric	times $\left(t_{1}, t_{2}\right)$ on paths $p_{1}$ and $p_{2}$ when the paths intersect.
length point of subpath	numeric   pair	path   path   path	numeric   pair   path	number of arcs in a path.   point on a path given a time value. portion of a path for given range of time values times.

Let us apply what we have learned in this subsection to a couple of examples. In the first example, we draw a tangent line at a point of a curve.


```
beginfig(1);
```

beginfig(1);
path c;
path c;
c = (0,0){dir(60)}..(100,50){dir (10)};
c = (0,0){dir(60)}..(100,50){dir (10)};
pair p[];
pair p[];
p0 = point(0.1) of c;
p0 = point(0.1) of c;
p1 = point(0.5) of c;
p1 = point(0.5) of c;
p2 = point(0.9) of c;
p2 = point(0.9) of c;
p3 = direction(0.5) of c;
p3 = direction(0.5) of c;
dotlabel.lrt(btex $T_{i-1}$ etex, p0);
dotlabel.lrt(btex $T_{i-1}$ etex, p0);
dotlabel.lrt(btex $U_i$ etex, p1);
dotlabel.lrt(btex $U_i$ etex, p1);
dotlabel.lrt(btex $T_i$ etex, p2);
dotlabel.lrt(btex $T_i$ etex, p2);
draw c;
draw c;
draw (-p3 -- p3) scaled (40/xpart(p3))
draw (-p3 -- p3) scaled (40/xpart(p3))
shifted p1;
shifted p1;
endfig;
endfig;
end;

```
end;
```

The second example is the trefoil knot, i.e, the torusknot of type $(1,3)$. The METAPOST code has been written such that assigning $n=5$ and $n=7$ draws the torusknot of type $(1,5)$ and $(1,7)$, respectively, in a nice way.

```
beginfig(1);
pair A,B; path p[];
numeric n; n:=3;
```



```
A = (0,2cm); B = A rotated (2*360/n);
p0 = A{dir(180)}..tension((n+1)/2)..
 B{dir(180+2*360/n)};
numeric a;
(a,whatever) = p0 intersectiontimes
 (p0 rotated (360/n));
p1 = subpath(0,a-.04) of p0;
p2 = subpath(a+.04,1) of p0;
drawoptions(withpen pencircle scaled 2);
for i=0 upto n-1:
 draw p1 rotated (i*360/n);
 draw p2 rotated (i*360/n);
endfor;
endfig;
end;
```

The third example shows a few steps in the Newton iterative method of finding zeros.


```
beginfig(1);
u := 1cm;
draw (-.5u,0)--(5u,0);
draw (0,-.5u)..(0,4u);
label.llft(btex O etex, (0,0));
label.rt(btex x etex, (5u,0));
label.top(btex y etex, (0,4u));
path f;
f = (.25u,-.5u){right}..(5u,4u){dir(70)};
draw f withpen pencircle scaled 1.2pt;
x0 = 4.6*u;
numeric t[];
for i=0 upto 1:
 (t[i],whatever) = f intersectiontimes
 ((x[i],-infinity)--(x[i],infinity));
 z[i] = point t[i] of f;
 (x[i+1],0) = z[i] +
 whatever*direction t[i] of f;
 draw (x[i],0)--z[i]--(x[i+1],0);
 fill fullcircle scaled 3.6pt shifted z[i];
endfor;
label.bot(btex x_0 etex, (x0,0));
label.bot(btex x_1 etex, (x1,0));
label.bot(btex x_2 etex, (x2,0));
endfig;
end;
```

Create the following picture, which has to do with Kepler's law of areas.


## 7 Control Structures

In this section we shall look at two commonly used control structures of imperative programming languages, viz., condition and repetition.

### 7.1 Conditional Operations

The basic form of a conditional statement is
if condition: balanced tokens else: balanced tokens fi
where condition represents an expression that evaluates to a boolean value (i.e., true or false) and the balanced tokens normally represent any valid METAPOST statement or sequence of statements separated by semicolons. The if statement is used for branching: depending on some condition, one sequence of METAPOST statements is executed or another. The keyword fi is the reverse of if and marks the end of the conditional statement. The keyword fi separates the statement sequence of the preceding command clause so that the semicolon at the end of the last command in the else: part can be omitted. It also marks the end of the conditional statement so that you do not need a semicolon after the keyword to separate the conditional statement from then next statement.

Other forms of conditional statements are obtained from the basic form by:

- Omitting the else: part when there is nothing to be said.
- Nesting of conditional operations. The following shortcut can be used: else: if can be replaced by elseif, in which case the corresponding fi must be omitted. For example, nesting of two basic if operations looks as follows:

```
if 1st condition: 1st tokens elseif 2nd condition: 2nd tokens fi
```

Let us give an example: computing the center of gravity (also called barycenter) of a number of objects with randomly generated weight and position. The example contains many more programming constructs, some of which will be covered in sections later on in the tutorial; so you may ignore them if you wish. The nested conditional statement is easily found in the METAPOST code below. With the commands numeric ( x ) and pair ( x ) we test whether x is a number or a point, respectively.

```
 2.22̈429 beginfig(1);
 1.37593 0.48்659
 0.688236
 1.39641
 1.0579 0.00526
```



The errmessage command is for displaying an error message if something goes wrong and interrupting the program at this point. The show statement is used here for debugging purposes. When you run the METAPOST program from a shell, show puts its results on the standard output device. In our example, the shell window looked like:
(heck@remote 1) mpost barycenter
This is MetaPost, Version 0.641 (Web2C 7.3.1)
(barycenter.mp
>> "location = (-13.14597, -80.09227)"

```
>> "weight = 1.0579"
>> "location = (-19.7488, -43.93861)"
>> "weight = 1.39641"
>> "location = (-43.89838, 7.07126)"
>> "weight = 1.37593"
>> "location = (-2.69252, 9.70473)"
>> "weight = 0.48659"
>> "location = (-24.17944, 25.14096)"
>> "weight = 2.22429"
>> "location = (-67.98569, -55.73247)"
>> "weight = 0.73831"
>> "location = (20.28859, -76.48691)"
>> "weight = 0.00526"
>> "location = (-67.07672, -18.69904)"
>> "weight = 0.68236" [1])
1 output file written: barycenter.1
Transcript written on barycenter.log.
(heck@remote 2)
```

The boolean expression that forms the condition can be built up with the following relational and logical operators.

Relational Operators	
Operator	Meaning
$=$	equal
$>$	unequal
$<$	less than
$<=$	less than or equal
$>$	greater than
$>=$	greater than or equal


Logical Operators	
Operator	Meaning
and	test if all conditions hold
or	test if one of many conditions hold
not	negation of condition

One final remark on the use of semicolons in the conditional statement. Where the colons after the if and else part are obligatory, semicolons are optional, dependinging on the context. For example, the statement

```
if cycle(p): fill p;
elseif path(p): draw p;
else: errmessage("what?");
fi;
```

fills or draws a path depending on the path p being cyclic or not. You may omit whatever semicolon in this example and rewrite it even as

```
if cycle(p): fill p
elseif path(p): draw p
else: errmessage("what?")
fi
```

However, when you use the conditional clause to build up a single statement, then you must be more careful with placing or omitting semicolons. In

```
draw p withcolor if cycle(p): red else: blue fi withpen pensquare;
```

you cannot add semicolons after the color specifications, nor omit the final semicolon that marks the end of the statement (unless it is a statement that is recognized as finished because of another keyword, e.g., endfor).

### 7.2 Repetition

Numerous examples in previous section have used the for loop of the form

```
for counter = start step stepsize until finish :
 loop text
endfor;
```

where counter is a counting variable with initial value start. The counter is incremented at each step in the repetition by the value of stepsize until it passes the value of finish. Then the repetition stops and METAPOST continues with what comes after the endfor part. The loop text is usually any valid METAPOST statement or sequence of statements separated by semicolons that are executed at each step in the repetition. Instead of step 1 until, we can also use the keyword upto. downto is another word for step -1 until. This counted for loop is an example of an unconditional repetition, in which a predetermined set of actions are carried out. Below, we give another example of a counted for loop: generating a Bernoulli walk. We use the normaldeviate operator to generate a random number with the standard normal distribution (mean 0 and standard deviation 1).


```
beginfig(1);
\(\mathrm{n}:=60\); pair p[] ; \(\mathrm{p} 0=(0,0)\);
for \(\mathrm{i}=1\) upto n :
 \(p[i]=p[i-1]+\)
 (3,if normaldeviate>0: -3 else: 3 fi);
endfor;
draw p 0 for \(\mathrm{i}=1\) upto n : \(-\mathrm{p}[\mathrm{i}]\) endfor;
endfig;
end;
```

The last example in the previous section, in which we computed the center of gravity of randomly generated weighted points, contained another unconditional repetition, viz., the for loop over a sequence of zero or more expressions separated by commas. Another example of this kind is:


Nesting of counted for loops is of course possible, but there are no abbreviations: balancing with respect to for and endfor is obligatory. You must use both endfor keywords in

```
for i=0 upto 10:
 for j=0 upto 10:
 show("i = " & decimal(i) & ", j = " & decimal(j));
 endfor
endfor
```


## EXERCISE 27

Create the following picture:


## EXERCISE 28

Create the picture below, which illustrates the upper and lower Riemann sum for the area enclosed by the horizontal axis and the graph of the function $f(x)=4-x^{2}$.


Create the following piece of millimeter paper.


## EXERCISE 30

A graph is bipartite when its vertices can be partitioned into two disjoint sets $A$ and $B$ such that each of its edges has one endpoint in $A$ and the other in $B$. The most famous bipartite graph is $K_{3,3}$ show below to the left. Write a program that draws the $K_{n, n}$ graph for any natural number $n>1$. Show that your program indeed creates the graph $K_{5,5}$, which is shown below to the right.


Another popular type of repetition is the conditional loop. METAPOST does not have a preor post conditional loop (while loop or until loop) built in. You must create one by an endless loop and an explicit jump outside this loop. First the endless loop: this is created by

```
forever: loop text endfor;
```

To terminate such a loop when a boolean condition becomes true, use an exit clause:

```
exitif boolean expression;
```

When the exit clause is encountered, METAPOST evaluates the boolean expression and exits the current loop if the expression is true. Thus, METAPOST's version of a until loop is

```
forever:
 loop text;
 exitif boolean expression;
endfor;
```

If it is more convenient to exit the loop when an expression becomes false, then use the predefined macro exitunless Thus, METAPOST's version of a while loop is:

```
forever: exitunless boolean expression;
 loop text
endfor
```


## 8 Macros

### 8.1 Defining Macros

In the section about the repetition control structure we introduced upto as a shortcut of step 1 until. This is also how it is is internally defined in METAPOST:

```
def upto = step 1 until enddef;
```

It is a definition of the form

```
def name = replacement text enddef;
```

It calls for a macro substitution of the simplest kind: subsequent occurrences of the token name will be replaced by the replacement text. The name in a macro is a variable name; the replacement text is arbitrary and may for example consist of a sequence of statements separated by semicolons.
It is also possible to define macros with arguments, so that the replacement text can be different for different calls of the macro. An example of a built-in, parametrized macro is:

```
def rotatedaround(expr z, d) = % rotates d degrees around z
 shifted -z rotated d shifted z
enddef;
```

Although it looks like a function call, a use of rotatedaround expands into in-line code. The expr in this definition means that a formal parameter (here $\mathbf{z}$ or d ) can be an arbitrary expression. Each occurrence of a formal parameter will be replaced by the corresponding actual argument (this is referred to as 'call-by-value'). Thus the line

```
rotatedaround(p+q, a+b);
```

will be replaced by the line

```
shifted -(p+q) rotated (a+b) shifted (p+q);
```

Macro parameters need not always be expressions. Another argument type is text, indicating that the parameters are just past as an arbitrary sequence of tokens.

### 8.2 Grouping and Local Variables

In METAPOST, all variables are global by default. But you may want to use in some piece of METAPOST code a variable that has temporarily inside that portion of code a value different from the one outside the program block. The general form of a program block is

```
begingroup statements endgroup
```

where statements is a sequence of one or more statements separated by semicolons. For example, the following piece of code

```
x := 1; y := 2;
begingroup x:=3; y:=x+1; show(x,y); endgroup
show(x,y);
```

will reveal that the x and y values are 3 and 4, respectively, inside the program block. But right after this program block, the values will be as before, viz., 1 and 2 .

The program block is used in the definition of the hide macro:

```
def hide(text t) = exitif numeric begingroup t; endgroup; enddef;
```

It takes a text parameter and interprets it as a sequence of statements while ultimately producing an empty replacement text. In other words, this command allows you to run code silently.

Grouping often occurs automatically in METAPOST. For example, the beginfig macro starts with begingroup and the replacement text for endfig ends with endgroup. vardef macros are always grouped automatically, too.

You may want to go one step further: not only treating values of a variable locally, but also its name. For example, in a macro definition you may want to use a so-called local variable, i.e., a variable that only has meaning inside that definition and does not interfere with existing variables. In general, variables are made local by the statement

```
save name sequence;
```

For example, the macro whatever has the replacement text ${ }^{8}$

```
begingroup save ?; ? endgroup
```

This macro returns an unknown. If the save statement is used outside of a group, the original values are simply discarded. This explains the following definition of the built-in macro clearxy:

```
def clearxy = save x,y enddef
```


### 8.3 Vardef Definitions

Sometimes we want to return a value from a macro, as if it is a function or subroutine. In this case we want to make sure that the calculations inside the macro do not interfere with the expected use of the macro. This is the main purpose of the vardef definition of the form

$$
\text { def } n a m e=\text { replacement text } ; \text { returned text enddef } ;
$$

By using vardef instead of def we hide the replacement text but the last statement, which returns a value. Below we given an example of a macro that generates a random point in the region $[1, r] \times[b, u]$. We use the uniformdeviate to generate a random number with the uniform distribution between 0 and the given argument. A validity test on the actual arguments is carried out; in case a region is not defined properly, we use errmessage to display some text and exit from the macro call, returning the origin as default point when computing is continued.

[^6]beginfig(1);
beginfig(1);
vardef randompoint(expr l,r,b,u) =
vardef randompoint(expr l,r,b,u) =
if (r<=l) or ( }u<=b)\mathrm{ :
if (r<=l) or ( }u<=b)\mathrm{ :
errmessage("not a proper region");
errmessage("not a proper region");
origin
origin
else:
else:
numeric x, y;
numeric x, y;
x = l+uniformdeviate(r-l);
x = l+uniformdeviate(r-l);
y = b+uniformdeviate(u-b);
y = b+uniformdeviate(u-b);
(x,y)
(x,y)
fi
fi
enddef;
enddef;
for i=0 upto 10:
for i=0 upto 10:
dotlabel("",randompoint(10, 100,10, 100));
dotlabel("",randompoint(10, 100,10, 100));
endfor;
endfor;
endfig;
endfig;
end;
end;

Do not place a semicolon after origin or ( $\mathrm{x}, \mathrm{y}$ ). In that case, the statement becomes part of the hidden replacement text and an empty value is returned. This causes a runtime error.

### 8.4 Defining the Argument Syntax

In METAPOST, you can explicitly define the argument syntax and construct unary, binary, or tertiary operators. Let us look at the code of a predefined unary operator:

```
vardef unitvector primary z = z/abs z enddef;
```

As the example suggests, the keyword primary is enough to specify the macro as a unary vardef operator. Other keywords are secondary and tertiary. The advantage of specifying an $n$-ary operator is that you do not need to place brackets around arguments in compound statements; METAPOST will sort out which tokens are the arguments. For example

```
unitvector v rotated angle v;
```

is understood to be equivalent to

```
(unitvector(v)) rotated(angle(v));
```

You can also define a macro to play the role of an of operation. For example, the direction of macro is predefined by

```
vardef direction expr t of p =
 postcontrol t of p - precontrol t of p
enddef;
```


### 8.5 Precedence Rules of Binary Operators

METAPOST provides the classifiers primarydef, secondarydef, and tertiarydef (for def macros, not for vardef macros) to set the level of priority of a binary operator. In the example below, the orthogonal projection of a vector v along another vector w is defined as a secondary binary operator.

beginfig(1);
beginfig(1);
secondarydef v projectedalong w =
secondarydef v projectedalong w =
if pair(v) and pair(w):
if pair(v) and pair(w):
(v dotprod w) / (w dotprod w) * w
(v dotprod w) / (w dotprod w) * w
else:
else:
errmessage "arguments must be vectors"
errmessage "arguments must be vectors"
fi
fi
enddef;
enddef;
pair u[]; u1 = (20,80); u2 = (60,15);
pair u[]; u1 = (20,80); u2 = (60,15);
drawarrow origin--u1;
drawarrow origin--u1;
drawarrow origin--u2;
drawarrow origin--u2;
drawarrow origin--2*u2;
drawarrow origin--2*u2;
u3 = u1 projectedalong u2;
u3 = u1 projectedalong u2;
u4 = 2*u2 projectedalong u1;
u4 = 2*u2 projectedalong u1;
drawarrow origin--u3 withcolor blue;
drawarrow origin--u3 withcolor blue;
draw u1--u3 dashed withdots;
draw u1--u3 dashed withdots;
draw ((1,0)--(1,1)--(0,1))
draw ((1,0)--(1,1)--(0,1))
zscaled (6pt*unitvector(u2)) shifted u3;
zscaled (6pt*unitvector(u2)) shifted u3;
drawarrow origin--u4 withcolor blue;
drawarrow origin--u4 withcolor blue;
draw 2*u2--u4 dashed withdots;
draw 2*u2--u4 dashed withdots;
draw ((1,0)--(1,1)--(0,1))
draw ((1,0)--(1,1)--(0,1))
zscaled (6pt*unitvector(-u1)) shifted u4;
zscaled (6pt*unitvector(-u1)) shifted u4;
labeloffset := 4pt;
labeloffset := 4pt;
label.rt(btex $u_1$ etex, u1);
label.rt(btex $u_1$ etex, u1);
label.bot(btex $u_2$ etex, u2);
label.bot(btex $u_2$ etex, u2);
label.bot(btex $2u_2$ etex, 2*u2);
label.bot(btex $2u_2$ etex, 2*u2);
label.bot(btex $u_3$ etex, u3);
label.bot(btex $u_3$ etex, u3);
label.lft(btex $u_4$ etex, u4);
label.lft(btex $u_4$ etex, u4);
endfig;
endfig;
end;
end;

### 8.6 Recursion

A macro is defined recursively if in its definition, it makes a call to itself. Recursive definition of a macro is possible in METAPOST. We shall illustrate this with the computation of a Pythagorean tree.


## EXERCISE 31

The Koch snowflake is constructed as follows: start with an equilateral triangle. Break each edge into four straight pieces by adding a bump a shown below.


You can then repeat the process of breaking a line segment into four pieces of length one-fourth of the segment that is broken up. Below you see the next iteration.


Write a program that can compute the picture after $n$ iterations. After six iteration, the Koch snowflake should like like


### 8.7 Using Macro Packages

METAPOST comes with built-in macro packages, which are nothing more than files containing macro definitions and constants. The most valuable macro package is graph, which contains high-level utility macros for easy drawing graphs and data plots. The graph package is loaded by the statement

```
input graph
```

A detailed description, including examples, of the graph package can be found in [Hob92b, GRS94]. Here, we just show one example of its use. We represent the following data about the annual beer consumption in the Netherlands in the period 1980-2000 graphically ${ }^{9}$.

year	1980	1985	1990	1995	2000
liter	86	85	91	86	83

Suppose that the data are stored columnwise in a file, say consumption.dat, as

[^7]| 1980 | 86 |
| :--- | :--- |
| 1985 | 85 |
| 1990 | 91 |
| 1995 | 86 |
| 2000 | 83 |

The following piece of code produces a line plot of the data. The only drawback of the graph package appears: years are by default marked by decade. This explains the erroneous horizontal labels.


```
input graph;
```

input graph;
beginfig(1);
beginfig(1);
draw begingraph(4cm,4cm);
draw begingraph(4cm,4cm);
gdraw "consumption.dat";
gdraw "consumption.dat";
endgraph;
endgraph;
endfig;
endfig;
end;

```

A few changes in the code draws the data point as bullets, changes the frame style, limits the number of tick marks on the horizontal axis, and puts labels near the axes.
```

beginfig(1);
draw begingraph(4cm,4cm);

```

```

gdraw "consumption.dat" plot btex $\bullet$ etex;
Gmarks := 3; % limit number of ticks
frame.llft;
glabel.lft(btex consumption in liters etex
rotated 90, OUT);
glabel.bot(btex year etex, OUT);
endgraph;
endfig;
end;

```

With the graph package, you can easily change in a plot the ticks, the scales, the grid used an/or displayed, the title of the plot, and so on.

\subsection*{8.8 Mathematical functions}

The following METAPOST code defines some mathematical functions that are not built-in. Note that METAPOST contains two trigonometric functions, viz., sind and cosd, but they expect their argument in degrees, not in radians.
```

vardef sqr primary x = (x*x) enddef;
vardef log primary x = (if x=0: 0 else: mlog(x)/mlog(10) fi) enddef;

```
```

vardef ln primary x = (if x=0: O else: mlog(x)/256 fi) enddef;
vardef exp primary x = ((mexp 256)**x) enddef;
vardef inv primary x = (if x=0: 0 else: x**-1 fi) enddef;
vardef pow (expr x,p) = (x**p) enddef;
% trigonometric functions
numeric pi; pi := 3.1415926;
numeric radian; radian := 180/pi; % 2pi*radian = 360 ;
vardef tand primary }x=(\operatorname{sind}(x)/\operatorname{cosd}(x)) enddef
vardef cotd primary x = (cosd(x)/sind(x)) enddef;
vardef sin primary x = (sind(x*radian)) enddef;
vardef cos primary x = (cosd(x*radian)) enddef;
vardef tan primary x = (sin(x)/cos(x)) enddef;
vardef cot primary x = (cos(x)/sin(x)) enddef;
% hyperbolic functions
vardef sinh primary x = save xx ; xx = exp xx ; ( }x\textrm{x}-1/\textrm{xx})/2 enddef ;
vardef cosh primary x = save xx ; xx = exp xx ; (xx+1/xx)/2 enddef ;
vardef tanh primary x = (sinh(x)/cosh(x)) enddef;
vardef coth primary x = (cosh(x)/sinh(x)) enddef;
% inverse trigonometric and hyperbolic functions
vardef arcsind primary x = angle((1+-+x,x)) enddef;
vardef arccosd primary x = angle((x,1+-+x)) enddef;
vardef arcsin primary x = ((arcsind(x))/radian) enddef;
vardef arccos primary x = ((arccosd(x))/radian) enddef;
vardef arccosh primary x = ln(x+(x+-+1)) enddef;
vardef arcsinh primary x = 犃 }\textrm{x}+(\textrm{x}++1))\mathrm{ ) enddef;

```

Most definitions speak for themselves, except that you may not be familiar with Pythagorean addition (++) and substraction (+-+):
\[
++(a, b)=\sqrt{a^{2}+b^{2}}, \quad+-+(a, b)=\sqrt{a^{2}-b^{2}} .
\]

\section*{9 More Examples}

The examples in this section are meant to give you an idea of the strength of METAPOST.

\subsection*{9.1 Electronic Circuits}
mpcirc is a macro package for drawing electronic circuits, developed by Tomasz Cholewo and downloadable from http://ci.uofl.edu/tom/software/LaTeX/mpcirc/. Let us use it to create some diagrams. We show the diagrams and the code to create them. The basic idea of mpcirc is that you have at your disposal a set of predefined electronic components such as resistor, capacity, diode, and so on. Each component has some connection points, referred to by \(\mathrm{a}, \mathrm{b}, \ldots\), for wires. You place the elements, using predefined orientations, and then connect them with wires. This mode of operating with mpcirc is referred to as turtle-based. Another programming style for drawing diagrams is node-based. In this approach, the node locations are determined first and then the elements are put between them using betw.x macros. We shall use the turtle-mode in our examples and hope that the comments speak for themselves.

```

u:=10bp; % unit of length
input mpcirc;
beginfig(1);
prepare(L,C,Vac); % mention your elements
z0=(10u,10u); % lower right node
ht:=6u; % height of circuit
z1=z0+(0,ht); % upper right node
C=.5[z0,z1]; % location of capacitor
L.t=T.r; % use default orientation
C.t=Vac.t=T.u; % components rotated 90 degrees
% set the distance between Voltage and Capacitor
equally_spaced(5u,0) Vac, C;
L=z1-0.5(C-Vac); % location of spool
edraw; % draw components of the circuit
% draw wires connecting components
% the first ones rotated 90 degrees
wire.v(Vac.a,z0);
wire.v(Vac.b,L.a);
wire.v(L.b,z1);
wire(C.a,z0);
wire(C.b,z1);
endfig;
end;

```

\(u:=10 \mathrm{bp}\); \% unit of length
input mpcirc;
beginfig(1);
prepare (L, R,C,Vac); \% mention your elements
\(z 0=(0,0) ; \quad \%\) lower left node
ht:=6u; \(\quad \%\) height of circuit
z1=z0+(0,ht); \% upper left node
```

Vac=.5[z0,z1]; % location of voltage
Vac.t=T.u; % rotated 90 degrees
L.t=R.t=C.t=T.r; % default orientation
% set equal distances
equally_spaced(5u,0) z1,R,L,C,z2;
edraw; % draw elements of circuits
% draw wires connecting nodes
% the first ones rotated 90 degrees
wire.v(Vac.a,z0);
wire.v(Vac.b,z1);
wire.v(z2,z0);
wire(z1,R.a);
wire(R.b,L.a);
wire(L.b,C.a);
wire(C.b,z2);
endfig;
end;

```

u:=10bp; \% unit of length
input mpcirc;
beginfig(1);
prepare (L,R,C,Vac); \% mention your elements
z0=(0,0); \% lower left node
ht:=6u; \(\quad \%\) height of circuit
z1=z0+(0,ht); \% upper left node
Vac=.5[z0,z1]; \% location of voltage
Vac.t=T.u; \% rotated 90 degrees
L.t=R.t=C.t=T.r; \% default orientation
\(\%\) set equal distances
equally_spaced(7.5u,0) z1,z2,z3;
L=0.5[z1,z2]; \% location of spool
\(\mathrm{C}=0.5[z 2, z 3]-(0,2 u)\);
\(\mathrm{R}=0.5[\mathrm{z} 2, \mathrm{z} 3]+(0,2 \mathrm{u})\);
\(z 4=z 3+(2.5 u, 0)\);
edraw; \% draw elements of circuits
\% draw wires connecting nodes
wire.v(Vac.a,z0);
wire.v(Vac.b,z1);
```

wire(z1,L.a);
wire(L.b,z2);
wire.v(z2,C.a);
wire.v(z2,R.a);
wire.v(z3,C.b);
wire.v(z3,R.b);
wire(z3,z4);
wire.v(z4,z0);
endfig;
end;

```

\subsection*{9.2 Marking Angles and Lines}

In geometric pictures, line segments of equal length are often marked by an equal number of ticks and equal angles are often marked the same, too. In the following example, the macros tick, mark_angle, and mark_right_angle mark lines and angles. When dealing with angles, we use the macro turningnumber to find the direction of a cyclic path: 1 means counter-clockwise, -1 means clockwise. We use it to make our macros mark_angle, and mark_right_angle independent of the order in which the non-common points of the angle are specified.

```

% set some user-adjustable constants
angle_radius := 4mm;
angle_delta := 0.5mm;
mark_size := 2mm;
def mark_angle(expr A, common, B, n) = % draw 1, 2, 3 or 4 arcs
draw_angle(A, common, B, angle_radius);
if n>1: draw_angle(A, common, B, angle_radius+angle_delta); fi;
if n>2: draw_angle(A, common, B, angle_radius-angle_delta); fi;
if n>3: draw_angle(A, common, B, angle_radius+2*angle_delta); fi;
enddef;
def draw_angle(expr endofa, common, endofb, r) =
begingroup

```
```

    save tn; tn := turningnumber(common--endofa--endofb--cycle);
    draw (unitvector(endofa-common){(endofa-common)
    rotated(tn*90)} .. unitvector(endofb-common)) scaled r shifted common;
    endgroup
    enddef;
def mark_right_angle(expr endofa, common, endofb) =
begingroup
save tn; tn :=
turningnumber(common--endofa--endofb--cycle);
draw ((1,0)--(1,1)--(0,1)) zscaled(mark_size*
unitvector((1+tn)*endofa+(1-tn)*endofb-2*common)) shifted common;
endgroup
enddef;
def tick(expr p, n) =
begingroup
save midpnt;
midpnt = 0.5*arclength(p); % find the time when half-way the path
for i=-(n-1)/2 upto (n-1)/2:
draw_mark(p, midpnt+mark_size*i/2); % place n tick marks
endfor;
endgroup
enddef;
def draw_mark(expr p, m) =
begingroup
save t, dm; pair dm;
t = arctime m of p;
% find a vector orthogonal to p at time t
dm = mark_size*unitvector(direction t of p rotated 90);
draw(-1/2dm..1/2dm) shifted (point t of p); % draw tick mark
endgroup
enddef;
beginfig(1);
pair A, B, C, D;
A := (0,0); B := (3cm,0); C := (1.5cm,4cm); D := (1.5cm,0);
draw A--B--C--cycle; draw C--D; % draw triangle and altitude
label.bot("A", A); label.bot("B", B); label.top("C", C); label.bot("D", D);
tick(A--D,1); tick(D--B,1); tick(A--C,2); tick(B--C,2);
mark_angle(C,A,B,2); mark_angle(A,B,C,2); mark_angle(B,C,A,1);
mark_right_angle(C,D,B);
endfig;
end;

```

\subsection*{9.3 Vectorfields}

In the first example below we show the directional field corresponding with the ordinary differential equation \(y^{\prime}=y\). For clarity, we show a vectorfield instead of a directional field with small line segments.

```

beginfig(1);
% some constants
numeric xmin, xmax, ymin, ymax, xinc, u;
xmin := -1.5; xmax := 1.5; ymin := 0; ymax := 4.5;
xinc := 0.05; u := 1cm;
% draw axes
draw (xmin-0.5,0)*u -- (xmax+0.5,0)*u;
draw (0,ymin-0.5)*u -- (0,ymax+0.5)*u;
% define f making up the ODE y' = f(x,y). Here we take y' = y
% with the exponential curve as solution curve
vardef f(expr x,y) = y enddef;
% define routine to compute function values
def compute_curve(suffix g) (expr xmin, xmax, xinc) =
( (xmin,g(xmin))
for x=xmin+xinc step xinc until xmax: .. (x,g(x)) endfor )
enddef;
% compute and draw exponential curve
vardef exp(expr x) = (mexp 256)**x enddef;
path p; p := compute_curve(exp, xmin, xmax, xinc) scaled u;
draw p;

```
```

% draw direction field
pair vec; path v;
for x=xmin step 0.5 until xmax:
for y=ymin+0.5 step 0.5 until ymax-0.5:
vec := unitvector( (1,f(x,y)) ) scaled 1/2u;
v := ((0,0)--vec) shifted -1/2vec;
drawarrow v shifted (x*u,y*u) withcolor blue;
endfor;
endfor;
% draw directions along the exponential curve
for x=-0.5 step 0.5 until xmax:
vec := unitvector( (1,f(x,exp(x))) ) scaled 1/2u;
v := ((0,0)--vec) shifted -1/2vec;
drawarrow v shifted (x*u,exp(x)*u) withcolor red;
endfor;
% draw ticks and labels
for x=round(xmin) upto xmax:
draw (x,-0.05)*u--(x,0.05)*u;
endfor;
for y=round(ymin) upto ymax:
draw (-0.05,y)*u-- (0.05,y)*u;
endfor;
label.bot(btex $x$ etex, (xmax+0.5,0)*u);
label.lft(btex $y$ etex, (0,ymax+0.5)*u);
label(btex $y=e^x$ etex, (xmax, exp(xmax)+0.5)*u);
endfig;
end;

```

Now we shall show some other examples of directional fields corresponding with ODEs and solution curves using the macro package courbe from Jean-Michel Sarlat, which we downloaded from http://melusine.eu.org/syracuse/metapost/courbes/.

\[
\left(x+x^{2}\right) y^{\prime}-y=-1
\]
```

verbatimtex
%\&latex
\documentclass{article}
\begin{document}
etex
input courbes;
vardef fx(expr t) = t enddef;
vardef fy(expr t) = 1+a*t/(1+t) enddef;
beginfig(1);
repere(10cm,10cm,5cm, 5cm,2cm, 2cm);
trace.axes(0.5pt);
marque.unites(1mm);
%% Champs de vecteurs
vardef F(expr x,y) = (y-1)/(x+x**2) enddef;
champ.vecteurs(0.1,0.1,0.2,0.15,0.5white);
%% Courbes intgrales
color la_couleur;
la_couleur = (0.9,0.1,0.9);
for n = 0 upto 20:
a := (n/8) - 1.25;
draw ftrace(-0.995,2.5,50) en_place withcolor la_couleur;
draw ftrace(-2.5,-1.1,50) en_place withcolor la_couleur;
endfor;
%
draw rpoint(r_xmin,1)--rpoint(r_xmax,1) withcolor la_couleur;
decoupe.repere;
etiquette.axes;
etiquette.unites;
label(btex $(x+x^2)y'-y=-1$ etex scaled 2.5,rpoint(0,-3));
endfig;
end;

```

In the next example, we added a macro to the courbes.mp package for drawing a directional field with line segments instead of arrows.
```

verbatimtex
%\&latex
\documentclass{article}
\begin{document}
etex
input courbes;
% ========================================== fonctions
vardef fx(expr t) = t enddef;
vardef fy(expr t) = tan(t+a) enddef;

```
```

%========================================== figure
beginfig(1);
repere(10cm,10cm,5cm,5cm, 2cm, 2cm);
trace.axes(0.5pt);
marque.unites(1mm);
%% Champs de directions
vardef F(expr x,y) = 1+y**2 enddef;
champ.segments (0,0,0.2,0.1,0.5white);
%% Courbes intgrales
for n = 0 upto 16:
a := (n/2) - 4;
draw ftrace(-1.5-a,1.5-a,50) en_place withcolor (0.5,0.6,0.1);
endfor;
decoupe.repere;
etiquette.axes;
etiquette.unites;
label(btex $y'=1+y^2$ etex scaled 2.5,rpoint(0,-3));
endfig;
end;

```

```

$$
y^{\prime}=1+y^{2}
$$

```

\subsection*{9.4 Riemann Sums}

Another example of the courbes.mp macro package is the following illustration of Riemann sums. We show two pictures for different number of segments.

```

verbatimtex
%\&latex
\documentclass{article}
\everymath{\displaystyle}
\begin{document}
etex
input courbes;
vardef fx(expr t) = t enddef;
vardef fy(expr t) = (t-5)*sin(t)-cos(t)+2 enddef;
beginfig(1);
numeric a,b,n,h;
a = 1; b = 7; n = 6; h = (b-a)/n;
color aubergine; aubergine = (37/256,2/256,29/256);
repere(10cm,10cm, 2cm,3cm,1cm,1cm);
fill ((a,0)--ftrace(a,b,200)--(b,0)--cycle) en_place withcolor 0.7red;
for i=1 upto n:
path cc;
aa := a + (i-1) * h;
bb := aa + h;
ff := fy(aa + h/2);
cc := rpoint(aa,0)--rpoint(aa,ff)--rpoint(bb,ff)--rpoint(bb,0);
fill cc--cycle withcolor 0.8white;
draw cc;
endfor;
trace.axes(0.5pt);
trace.courbe(a,b,200,2pt, aubergine);

```
```

decoupe.repere;
etiquette.axes;
label.bot(btex $x_{i-1}$ etex, rpoint(a+n/2*h,0));
label.bot(btex $x_{0}$ etex, rpoint(a,0));
label.bot(btex $x_{n}$ etex, rpoint(b,0));
label.ulft(btex $\mathbf{a}$ etex, rpoint(a,0));
label.urt(btex $\mathbf{b}$ etex, rpoint(b,0));
label.top(btex $\mathbf{y=f(x)}$ etex, f(b) en_place);
label.bot(btex $x_{i}$ etex, rpoint(a+n/2*h+h,0));
projection.axes(f(a+(n+1)/2*h),0.5pt,2);
label.lft(btex $f(\xi_i)$ etex, rpoint(0,fy(a+(n+1)/2*h)));
label.bot(btex $\xi_i$ etex,rpoint(a+(n+1)/2*h,-0.4));
drawarrow rpoint(a+(n+1)/2*h,-0.4)--rpoint(a+(n+1)/2*h,-0.1);
label(btex *Riemann Sum* etex scaled 2,rpoint(4,5));
label(btex $S = \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1})$ etex
scaled 1.5,rpoint(5,-2));
endfig;
end;

```

\subsection*{9.5 Iterated Functions}

The following diagrams are 'standard' in the theory of iterative processes:
- The cobweb-graph of applying the cosine function iteratively.

- The bifurcation diagram of the logistic function, i.e., of \(f(x)=r x(1-x)\) for \(0<r<4\).

The code that produced these diagrams is shown below.
```

verbatimtex
%\&latex
\documentclass{article}
\begin{document}
etex
beginfig(1)
% some constants
u := 10cm;
numeric xmin, xmax, ymin, ymax, xinc;
xmin := 0.5; xmax := 1.0;
ymin := xmin; ymax := xmax;
xinc := 0.02;
% draw axes
draw (xmin,ymin)*u -- (xmax,ymin)*u;
draw (xmin,ymin)*u -- (xmin,ymax)*u;
% define routine to compute function values
def compute_curve(suffix g)(expr xmin, xmax, xinc) =
( (xmin,g(xmin))
for x=xmin+xinc step xinc until xmax:
.. (x,g(x))
endfor )
enddef;

```
```

% compute and draw cosine curve
numeric pi; pi := 3.1415926;
numeric radian; radian := 180/pi; % 2pi*radian = 360 ;
vardef cos primary x = (cosd(x*radian)) enddef;
path p;
p := compute_curve(cos, xmin, xmax, xinc) scaled u;
draw p;
% draw identity graph
draw (xmin,ymin)*u -- (xmax,xmax)*u withcolor 0.5white;
% compute the orbit starting from some point
numeric x, initial, orbitlength;
x := 1.0; % the starting point
initial := 1; % some initial iterations
orbitlength := 15; % number of iterations
for i=1 upto initial: % do initial iterations
x := cos(x);
endfor;
dotlabel("", (x,cos(x))*u); % mark starting point
for i=1 upto orbitlength: % draw hooks
draw (x,\operatorname{cos(x))*u -- (cos(x), cos(x))*u -- (cos(x), cos(cos(x)))*u withcolor blue;}
x := cos(x); % next value
endfor;
% draw axis labels
labeloffset := 0.25cm;
label.bot(decimal(xmin), (xmin,ymin)*u);
label.bot(decimal(xmax), (xmax,ymin)*u);
label.lft(decimal(ymin), (xmin,ymin)*u);
label.lft(decimal(ymax), (xmin,ymax)*u);
endfig;
beginfig(2)
numeric rmin, rmax, r, dr, n, ux, uy;
rmin := 2.9; rmax := 3.9;
r := rmin; n := 175;
dr := (rmax - rmin)/n;
ux := 8cm; uy := 8cm;
for i = 1 upto n:
x := 0.5; % our starting point
for j=1 upto 75: % initial iterations
x := r*x*(1-x);
endfor
for j=1 upto 150: % the next 100 iterations
x := r*x*(1-x);
draw (r*ux,x*uy) withpen pencircle scaled .5pt;
endfor

```
```

    r := r+dr;
    endfor;
% draw axes and labels
draw (rmin*ux,0) -- (rmax*ux,0);
draw (rmin*ux,0) -- (rmin*ux,uy);
labeloffset := 0.25cm;
label.bot(decimal(rmin), (rmin*ux,0));
label.bot(decimal((rmin+rmax)/2), ((rmin+rmax)/2*ux,0));
label.bot(decimal(rmax), (rmax*ux,0));
label.lft(decimal(0), (rmin*ux,0));
label.lft(decimal(0.5), (rmin*ux,0.5*uy));
label.lft(decimal(1), (rmin*ux,uy));
label.bot(btex $r$ etex, ((rmax-0.2)*ux,0));
label.lft(btex orbit etex rotated 90, (rmin*ux,0.75*uy));
endfig;
end;

```

\subsection*{9.6 A Surface Plot}

You can draw surface plots from basic principles. We give one example.

```

verbatimtex
%\&latex
\documentclass{article}

```
```

\begin{document}
etex
% u: dimensional unit
% xp, yp, zp: coordinates of light source
% bf : brightness factor
% base_color : base color
numeric u,xp,yp,zp,bf;
color base_color;
u = 1cm;
xp := 3; yp := 3; zp := 5;
bf := 30;
base_color := red+green;
% O, Xr, Yr, Zr : reference frame
pair O,Xr,Yr,Zr;
O = (0,0);
Xr = (-.7,-.7) scaled u;
Yr = (1,0) scaled u;
Zr = (0,1) scaled u;
% for drawing the reference frame
vardef frameXYZ(expr s) =
drawarrow 0--Xr scaled s;
drawarrow 0--Yr scaled s;
drawarrow 0--Zr scaled s;
label.llft(btex $X$ etex scaled 1.25, (Xr scaled s));
label.rt(btex $Y$ etex scaled 1.25, (Yr scaled s));
label.top(btex $Z$ etex scaled 1.25, (Zr scaled s));
enddef;
% from 3D to 2D coordinates
vardef project(expr x,y,z) = x*Xr + y*Yr + z*Zr enddef;
% numerical derivatives by central differences
vardef diffx(suffix f)(expr x,y) =
numeric h; h := 0.01;
(f(x+h,y)-f(x-h,y))/(2*h)
enddef;
vardef diffy(suffix f)(expr x,y) =
numeric h; h := 0.01;
(f(x,y+h)-f(x,y-h))/(2*h)
enddef;
% Compute brightness factor at a point
vardef brightnessfactor(suffix f)(expr x,y,z) =
numeric dfx,dfy,ca,cb,cc;

```
```

dfx := diffx(f,x,y);
dfy := diffy(f,x,y);
ca := (zp-z)-dfy*(yp-y)-dfx*(xp-x);
cb := sqrt(1+dfx*dfx+dfy*dfy);
cc := sqrt((z-zp)*(z-zp)+(y-yp)*(y-yp)+(x-xp)*(x-xp));
bf*ca/(cb*cc*cc*cc)
enddef;
% compute the colors and draw the patches
vardef z_surface(suffix f)(expr xmin, xmax,ymin,ymax,nx,ny) =
numeric dx,dy,xt,yt,zt,factor [] [];
pair Z[][];
dx := (xmax-xmin)/nx;
dy := (ymax-ymin)/ny;
for i=0 upto nx:
xt := xmin+i*dx;
for j=0 upto ny:
yt := ymin+j*dy;
zt := f(xt,yt);
Z[i][j] = project(xt,yt,zt);
factor[i][j] := brightnessfactor(f,xt,yt,zt);
endfor
endfor
for i = 0 upto nx-1:
for j= 0 upto ny-1:
fill Z[i][j]--Z[i][j+1]--Z[i+1][j+1]--Z[i+1][j]--cycle
withcolor factor[i][j]*base_color;
endfor
endfor
enddef;
beginfig(1);
xp := 3;
yp := 3;
zp := 10;
bf := 100;
numeric pi; pi := 3.14159;
vardef cos primary x = cosd(x/pi*180) enddef;
vardef f(expr x,y) = cos(x*y) enddef;
z_surface(f, -3,3, -3, 3, 100,100);
frameXYZ(5);
label(btex $z = \cos(xy)$ etex scaled 1.25,(0,-4cm));
endfig;
end;

```

\subsection*{9.7 Miscellaneous}

We adopt another example from Jean-Michel Sarlat that uses his macro package courbe and another one called grille. The example has been downloaded and slightly adapted from http://melusine.eu.org/syracuse/metapost/cours/sarlat/derivation/.

```

verbatimtex
%\&latex
\documentclass{article}
\begin{document}
etex
input courbes;
input grille;
vardef droite(expr a,b,t) =
(t[a,b])--(t[b,a])
enddef;
path c,cartouche;
c=(2.3cm, 1cm) . (4.5cm,4cm) . ( }9\textrm{cm},3\textrm{cm})
cartouche = (3cm,2mm)--(7cm,2mm)--(7cm,8mm)--(3cm,8mm)--cycle;
pair A,M;
A = point 0.6 of c;
M = point 1.5 of c;
vardef tangente(expr t,x) =
pair X,Y;
X := point (t-.05) of c;
Y := point (t+.05) of c;
droite(X,Y,x)
enddef;

```
```

beginfig(1);
grille(1cm,0,10cm,0,7cm);
repere(10cm,7cm, 2cm,2cm,1cm,1cm);
trace.axes(.5pt);
marque.unites(0.1);
%% lectures sur la grille
numeric xa,ya,xm,ym;
xa = 1.25; уа = 1.1 ; xm = 4.9 ; ym = 2.25;
pair AA,MM;
AA = (xa,ya) ; MM = (xm,ym) ;
projection.axes(AA,0.5,1.7);
projection.axes(MM,0.5,1.7);
label.bot(btex $a$ etex,rpoint(xa,0));
label.bot(btex $x$ etex,rpoint(xm,0));
label.lft(btex $f(a)$ etex, rpoint(0,ya));
label.lft(btex $f(x)$ etex, rpoint(0,ym));
%% fin des lectures
draw c withpen pencircle scaled 1.5pt withcolor (.2,.4,.9);
draw droite(A,M,1.2);
draw tangente(0.6,9) withpen pencircle scaled 1.5pt;
dotlabel.ulft(btex $A$ etex scaled 1.5,A);
dotlabel("",M);
label(btex $\displaystyle\frac{f(x)-f(a)}{x-a}$ etex scaled 1.25,
M shifted (1cm,1cm));
label.ulft(btex $f'(a)$ etex scaled 1.25, (5cm,5cm));
label.bot(btex graph of $f$ etex scaled 1.25, point 2 of c);
%% Cartouche
fill cartouche withcolor .8white;
draw cartouche;
label.rt(btex **Derivative at a point** etex,(3cm,5mm));
%% fin du cartouche
decoupe.repere;
etiquette.axes;
endfig;
end;

```

\section*{10 Solutions to the Exercises}

\section*{EXERCISE 3}
beginfig(1);
draw fullcircle scaled 2 cm ;
endfig;
end;

\section*{EXERCISE 4}
```

beginfig(1);
path p;
p := (0,0)--(2cm,0)--(1cm,sqrt (3)*cm)-- (0,0);
draw p;
endfig;
beginfig(2);
draw p scaled 1.5;
endfig;
end;

```
EXERCISE 5
beginfig(1);
u : \(=0.5 \mathrm{~cm}\);
draw \((2 u, 0)--(u\), sqrt (3) \(* \mathrm{u})--(-\mathrm{u}\), sqrt (3) \(* \mathrm{u})--(-2 \mathrm{u}, 0)\)
 --(-u, -sqrt (3) \(* u)--(u,-\operatorname{sqrt}(3) * u)--(2 u, 0)\);
endfig;
end;
EXERCISE 6
beginfig(1);
\(\mathrm{u}=1 \mathrm{~cm}\);
draw \((0,0)--(2 * s q r t(3) * u, 0)--(\operatorname{sqrt}(3) * u, 3 u)--(0,0)\);
draw \((0,0)--(\operatorname{sqrt}(3) * u, u)--(2 * \operatorname{sqrt}(3) * u, 0)\);
draw (sqrt(3) \(* \mathrm{u}, \mathrm{u})--(\operatorname{sqrt}(3) * u, 3 \mathrm{u})\);
endfig;
beginfig(2);
draw unitsquare scaled \(2 u\) shifted (-u,-u);
draw unitsquare scaled \(4 u\) shifted (\(-2 u,-2 u\)) ;
draw (u,u)--(2u,2u);
draw (-u,u)--(-2u,2u);
draw \((-u,-u)--(-2 u,-2 u)\);
draw (u, -u)--(2u, -2u) ;
endfig;
end;

\section*{EXERCISE 7}
warningcheck := 0;
numeric p, q, n;
\(\mathrm{n}:=12\);
p := 2**n;
\(\mathrm{q}:=2 * * \mathrm{n}+1\);
show p,q;
end;

\section*{EXERCISE 9}
beginfig(1)
draw unitsquare scaled 70;
draw \((10,20)\);
draw \((10,15)\) scaled 2 ;
draw \((30,40)\) withpen pencircle scaled 4 ;
pickup pencircle scaled 8;
draw \((40,50)\);
draw \((50,60)\);
endfig;
end;

\section*{EXERCISE 10}
beginfig(1)
pickup pencircle scaled 6bp;
\(z . P=(1 \mathrm{~cm}, 2 \mathrm{~cm})\);
draw z.P;
draw 2(x.P,y.P);
endfig;
end;

\section*{EXERCISE 11}
pair \(A, B, C, A^{\prime}, B^{\prime}, C^{\prime}\);
\(\mathrm{u}:=1 \mathrm{~cm}\);
\(\mathrm{A}=(0,0)\);
\(B=(5 u, 0)\);
\(C=(2 u, 3 u)\);
\(A^{\prime}=1 / 2[B, C]\);
\(B^{\prime}=1 / 2[A, C]\);
\(C^{\prime}=1 / 2[A, B] ;\)
beginfig(1)
draw \(\mathrm{A}--\mathrm{B}--\mathrm{C}--\mathrm{A}\);
draw A--A';
draw B--B';
draw C--C';
endfig;
beginfig(2)
draw A--B--C--A;
```

draw A--A';
draw B--B';
draw C--C';
dotlabel.lft("A",A);
dotlabel.urt("B",B);
dotlabel.top("C",C);
dotlabel.urt("A'",A');
dotlabel.ulft("B'",B');
dotlabel.bot("C'",C');
endfig;
beginfig(3)
pair G;
G = whatever[A,A'] = whatever[B,B'];
draw A--B--C--A;
draw A--A';
draw B--B';
draw C--C';
dotlabel.lft("A",A);
dotlabel.urt("B",B);
dotlabel.top("C",C);
dotlabel.urt("A'",A');
dotlabel.ulft("B'",B');
dotlabel.bot("C'",C');
dotlabel.llft("",G);
label.llft("G",G-(0,1.5mm));
endfig;
end;

```
EXERCISE 12
beginfig(1)
s := 2cm;
\(z 0=s * \operatorname{dir}(0)\);
z1 = s*dir(72)
z2 = s*dir (2*72);
\(z 3=s * \operatorname{dir}(3 * 72)\);
z4 = s*dir(4*72);
draw z0--z1--z2--z3--z4--z0;
endfig;
end;
EXERCISE 13
beginfig(1);
\(z=(1 \mathrm{~cm}, 1 \mathrm{~cm})\);
draw \(z\) withpen pencircle scaled 6;
z1 = z - 2cm*dir(135);
\(z 2=z+2 c m * \operatorname{dir}(135) ;\)
z3 = z + 2cm*dir(105);
draw z1--z2;
draw z--z3;
endfig;
end;

\section*{EXERCISE 14}
```

pair p[]; p0 = (0,0); p1 = (2cm,3cm); p2 = (3cm,2cm);
beginfig(1);
fill p0--p1--p2--p0;
endfig;
beginfig(2);
fill p0--p1--p2--cycle withcolor 0.5white;
endfig;
end;

```
EXERCISE 15
beginfig(1);
draw origin--2*cm*dir(0);
draw origin--2*cm*dir (40) ;
drawarrow 1cm*dir(0)\{dir(90)\}..
 \(1 \mathrm{cm*dir}(40)\{\operatorname{dir}(130)\}\)
endfig;
end;
EXERCISE 16
beginfig(1);
\(\mathrm{u}:=1 \mathrm{~cm}\);
z0 = origin; \(z 1=(2 u, 0) ; \quad z 2=(u, s q r t(3) * u) ;\)
draw z0--z1--z2;
draw z0\{up\}...z2;
draw z2\{down\}...z0;
pickup pencircle scaled 6;
draw \(z 0\); draw \(z 1\); draw z2;
endfig;
end;

\section*{EXERCISE 17}
```

beginfig(1)
path p;
p = (0,1cm)..(1cm,0) ... (0,-1cm);
fill p{dir(157)}..(0,0){dir(23)}..{dir(157)}cycle;
draw p..(-1cm,0)..cycle;
fill (0,-0.6cm)..(0.1cm, -0.5cm)..(0,-0.4cm)..(-0.1cm, -0.5cm)..cycle
withcolor white;
fill (0,0.6cm)..(0.1cm,0.5cm)..(0,0.4cm)..(-0.1cm,0.5cm)..cycle;
endfig;
end;

```

\section*{EXERCISE 18}
pair A,B,C,C';
path arc,mark[];
numeric \(\mathrm{AC}, \mathrm{BC}\); \% directional angle of AC and BC
\(u:=0.75 \mathrm{~cm}\); \(A=(0,0) ; B=(5 u, 0)\); \(C=(2 u, 3 u)\);
\(A C=\) angle \((A-C) ; B C=\) angle \((B-C) ;\)
\(C^{\prime}=\) whatever \([A, B]=C+\) whatever*dir \((1 / 2 * A C+1 / 2 * B C)\);
\(\operatorname{arc}=(\mathrm{C}+0.5 \mathrm{u} * \operatorname{dir}(\mathrm{AC}))\{\operatorname{dir}(\mathrm{AC}+90)\} . .\{\operatorname{dir}(\mathrm{BC}+90)\}(\mathrm{C}+0.5 \mathrm{u} * \operatorname{dir}(\mathrm{BC}))\);
\(\operatorname{mark}[1]=C+0.4 u * \operatorname{dir}(3 / 4 * A C+1 / 4 * B C)--\)
\(\mathrm{C}+0.6 \mathrm{u} * \operatorname{dir}(3 / 4 * \mathrm{AC}+1 / 4 * \mathrm{BC})\);
\(\operatorname{mark}[2]=C+0.4 \mathrm{u} * \operatorname{dir}(1 / 4 * \mathrm{AC}+3 / 4 * \mathrm{BC})--\) C+0.6u*dir (1/4*AC+3/4*BC) ;
beginfig(1)
draw A--B--C--cycle; draw C--C';
dotlabel.lft("A", A); dotlabel.urt("B", B);
dotlabel.top("C", C); dotlabel.bot("C'", C');
draw arc; draw mark[1]; draw mark[2];
endfig;
end;

\section*{EXERCISE 19}
```

pair A,B,C,A',B',C',I;
u := 0.75cm; A= (0,0); B= (5u,-u); C= (2u,3u);
A' = whatever [B,C] = A + whatever*dir(
1/2*angle(B-A)+1/2*angle(C-A));
B' = whatever [A,C] = B + whatever*dir(
1/2*angle(A-B)+1/2*angle (C-B));
C' = whatever[A,B] = C + whatever*dir(
1/2*angle(A-C)+1/2*angle (B-C));
I = whatever [A,A']=whatever [B, B'];
beginfig(1)
draw A--B--C--cycle;
draw A--A'; draw B--B'; draw C--C';
draw A'..B'..C'..cycle;
dotlabel.lft("A",A); dotlabel.rt("B",B);
dotlabel.top("C",C); dotlabel.urt("A'",A');
dotlabel.ulft("B'",B'); dotlabel.bot("C'",C');
labeloffset := 0.3cm;
dotlabel.llft("I",I);
endfig;
end;

```
EXERCISE 20
verbatimtex
\%\&latex
\documentclass\{article\}
\begin\{document\} }
etex
beginfig(1)
\(\mathrm{u}:=1 \mathrm{~cm}\);
numeric xmin, xmax, ymin, ymax, xinc;
```

xmin := 0; xmax := 4;
ymin := 0; ymax := 2;
% draw axes
draw (xmin,0)*u -- (xmax,0)*u;
draw (0,ymin)*u -- (0,ymax)*u;
% compute and draw graph of function
path p;
xinc := 0.1;
p := (xmin,sqrt(xmin))*u
for x=xmin+xinc step xinc until xmax:
.. (x,sqrt(x))*u
endfor;
draw p withpen pencircle scaled 2;
% draw tickmarks and labels
for i=0 upto xmax:
label.bot(decimal(i), (i,0)*u);
draw (i,-0.05)*u--(i,0.05)*u;
endfor;
for i=O upto ymax:
label.lft(decimal(i), (0,i)*u);
draw (-0.05,i)*u-- (0.05,i)*u;
endfor;
\labeloffset := 0.5u;
label.bot(btex $x$ etex, ((xmin+xmax)/2,0)*u);
label.lft(btex $y$ etex, (0,(ymin+ymax)/2)*u);
label(btex $y=\sqrt{x}$ etex, ((xmin+3xmax)/4,(ymin+2ymax)/3)*u);
endfig;
end;

```

\section*{EXERCISE 21}

\section*{verbatimtex}
\(\% \& l a t e x\)
\documentclass\{article\}
\usepackage\{amsmath, amssymb\}
\begin\{document\} }
etex
beginfig(1)
a := 3 cm ; b := 2 cm ;
phi := angle(a,b);
draw \((-1 / 2 \mathrm{~cm}, 0)--(\mathrm{a}+1 / 2 \mathrm{~cm}, 0)\); \% horizontal axis
draw (\(0,-1 / 2 \mathrm{~cm}\))--(\(0, \mathrm{~b}+1 / 2 \mathrm{~cm}\)) ; \% vertical axis
draw \((a, 0)--(a, b)--(0, b)\) dashed evenly;
draw origin--(a,b);
label.llft(btex \$0\$ etex, \((0,0))\);
label.bot (btex \(\$ \mathrm{a} \$\) etex, \((\mathrm{a}, 0))\);
label.lft(btex \$ib\$ etex, (0,b));
label.lft(btex \(\$ \backslash\) mathbb \(\{\mathrm{C}\} \$\) etex, \((0, b+1 / 2 \mathrm{~cm})\));
label.rt (btex \$a+ib=z\$ etex, (a,b));
label(btex \$\lbrace\$ etex xscaled 1.5 yscaled 10
 rotated (phi-90), \(1 / 2(\mathrm{a}, \mathrm{b})+\operatorname{dir}(90+\mathrm{phi}) * 1.5 \mathrm{~mm})\);
label (btex \(\$|z| \$\) etex, \(1 / 2(a, b)+\operatorname{dir}(90+p h i) * 5 m m)\);
draw \((1 / 2 \mathrm{~cm}, 0)\{u p\} . .1 / 2 \mathrm{~cm} * \operatorname{dir}(\mathrm{phi})\{\operatorname{dir}(90+\mathrm{phi})\}\);
label(btex \(\$ \backslash \mathrm{phi} \$\) etex, \(7 \mathrm{~mm} * \operatorname{dir}(\mathrm{phi} / 2)\));
endfig;
end;

\section*{EXERCISE 22}
verbatimtex
\%\&latex
\documentclass\{article\}
\begin\{document\} }
etex
beginfig(1)
u := 0.6 cm ;
labeloffset := 1/3u;
defaultscale := 8pt/fontsize(defaultfont);
\(\%\) the data
\(z 1=(1980,86) ; ~ z 2=(1985,85) ; ~ z 3=(1990,91) ;\)
\(z 4=(1995,86) ; z 5=(2000,83) ;\)
yoff := 80; \% vertical offset
\% draw axes
draw \((0,0)--(1 / 4 u, 0)--(1 / 3 u, 1 / 8 u)--(5 / 12 u,-1 / 8 u)\)
-- (\(1 / 2 u, 0)--(6 u, 0)\);
draw \((0,0)--(0,1 / 4 u)--(-1 / 8 u, 1 / 3 u)--(1 / 8 u, 5 / 12 u)\)
-- \((0,1 / 2 u)--(0,6.5 u)\);
\% draw horizontal axis and data points
for \(i=1\) upto 5:
draw \((1 / 2+i,-1 / 12) * u--(1 / 2+i, 1 / 12) * u ; \% t i c k s\)
label.bot(decimal(x[i]), ((1/2+i)*u,0)); \% labels
dotlabel("", (1/2+i, (y[i]-yoff)/2)*u); \% data point
endfor
\% draw line graph
draw (3/2, (y[1]-yoff)/2)*u
for i=2 upto 5: --(1/2+i, (y[i]-yoff)/2)*u endfor;
\% draw vertical axis
for \(i=1\) upto 6:
draw \((-1 / 12, i) * u--(1 / 12, i) * u ; \%\) ticks
label.lft(decimal (yoff+2i), (0,i*u)); \% labels
endfor
\% draw horizontal and vertical texts
label. bot (btex year etex, (7/2u,-1/2u));
label.lft(btex beer consumption (liter) etex
rotated 90 , (\(-1 / 2 \mathrm{u}, 7 / 2 \mathrm{u})\));
endfig;
end;

\section*{EXERCISE 23}
```

u := 1/2cm; defaultscale := 8pt/fontsize(defaultfont);
beginfig(1);
path sqr; sqr := unitsquare scaled u;
for i=0 upto 10:
label.bot(decimal(i/10), ((i+1/2)*u,0));
label.lft(decimal(i/10), (0,(i+1/2)*u));
for j=0 upto 10:
fill sqr shifted (i*u,j*u) withcolor (i*0.1+j*0.1)/3*white;
draw sqr shifted (i*u,j*u); % for drawing the grid
endfor;
endfor;

```
```

label.bot("r", (6u,-2/3u));
label.lft("g", (-u,6u));
label.top("RGB(r,g,0)", (6u,11u));
endfig;
beginfig(2);
path sqr; sqr := unitsquare scaled u;
for i=0 upto 10:
label.bot(decimal(i/10), ((i+1/2)*u,0));
label.lft(decimal(i/10), (0,(i+1/2)*u));
for j=0 upto 10:
fill sqr shifted (i*u,j*u) withcolor (0.3*i*0.1+0.59*j*0.1)*white;
draw sqr shifted (i*u,j*u); % for drawing the grid
endfor;
endfor;
label.bot("r", (6u,-2/3u));
label.lft("g", (-u,6u));
label.top("RGB(r,g,0)", (6u,11u));
endfig;
end;

```
EXERCISE 24
beginfig(1);
path O[], l[]; pair A[];
\(01=\) fullcircle xscaled 1 cm yscaled \(1 / 2 \mathrm{~cm}\) shifted (\(0,1 \mathrm{~cm}\)) ;
\(02=01\) rotated -120 ;
A1 \(=(-1 / 2 \mathrm{~cm}, 1 \mathrm{~cm})\);
\(\mathrm{A} 2=\mathrm{A} 1\) xscaled -1 ;
\(11=\mathrm{A} 1\{\) down\}. (A2 rotated -120) \{down rotated 60\};
\(12=\mathrm{A} 2\{\) down \(\} .(\mathrm{A} 1\) rotated -120\()\) \{down rotated 60\};
draw 01 ; draw 02 ; draw 11 ; draw 12 ;
endfig;
end;

\section*{EXERCISE 25}
beginfig(1);
r := 3 cm ;
path C[], p[], a;
C1 = fullcircle scaled 2 r ;
\(\mathrm{C} 2=\) fullcircle scaled (\(2 / 3 * 2 r\));
p1 = origin -- r*dir(20);
p2 = origin -- r*dir(35);
a := buildcycle(p1, C2, p2,C1);
fill a withcolor red+green;
draw a withpen pencircle scaled 1bp;
draw p1; draw p2;
endfig;
end;

\section*{EXERCISE 26}
```

beginfig(1);
u := 1cm; a := 6u; b := 3.5u;
pair sun; sun := (-1.75u,0);
path E[], p[], area[];
E1 = fullcircle xscaled a yscaled b;
E2 = E1 scaled 1.1;
p1 = sun -- (5u*dir(8) shifted sun);
p2 = sun -- (4u*dir(28) shifted sun);
p3 = sun -- (2u*dir(75) shifted sun);
p4 = sun -- (1.75u*dir(150) shifted sun);
area1 = buildcycle(p1,E1,p2);
area2 = buildcycle(p3,E1,p4);
fill area1 withcolor red+green;
fill area2 withcolor red+green;
draw p1; draw p2; draw p3; draw p4; draw E1;
draw (-a/2,0)--(a/2,0) dashed withdots;
draw sun withpen pencircle scaled 6bp;
label.bot(btex Sun etex, sun);
numeric t[]; % intersection times
t1 = ypart (p1 intersectiontimes E2);
t2 = ypart (p2 intersectiontimes E2);
t3 = ypart (p3 intersectiontimes E2);
t4 = ypart (p4 intersectiontimes E2);
drawarrow subpath (t1,t2) of E2;
drawarrow subpath (t3,t4) of E2;
label.urt(btex $\Delta t$ etex, point((t1+t2)/2) of E2);
label.ulft(btex $\Delta t'$ etex, point((t3+t4)/2) of E2);
endfig;
end;

```

\section*{EXERCISE 27}
beginfig(1);
u:=1cm;
draw \((-2 u, 0)--(2 u, 0)\);
draw \((0,-2 u)--(0,2 u)\);
for \(i=-2 u\) step \(u\) until \(2 u\) :
 draw (i,u/10)--(i,-u/10);
 draw (u/10,i)--(-u/10,i);
endfor;
for \(i=-2 u\) step \(u / 5\) until \(2 u\) :
 draw (i,u/20)--(i,-u/20);
 draw \((u / 20, i)--(-u / 20, i)\);
endfor;
endfig;
end;

\section*{EXERCISE 28}
beginfig(1);
u:=1cm;
numeric xmin, xmax, ymin, ymax;
```

xmin := -2.1; xmax := 2.1;
ymin := -0.5; ymax := 4.5;
% draw axes
path xaxis, yaxis;
xaxis = (xmin,0)*u -- (xmax,0)*u;
yaxis = (0,ymin)*u -- (0,ymax)*u;
% compute the graph of f
def f(expr x) = (4-x**2) enddef;
inc := 0.01;
path pts_f;
pts_f := (xmin*u,f(xmin)*u)
for x=xmin+inc step inc until xmax:
.. (x*u,f(x)*u)
endfor;
% compute and draw rectangles
n := 12; % number of rectangles
x0 := -2; x1 := 2;
inc := (x1-x0)/n;
for i=x0 step inc until x1-inc:
path p;
p = (i,0)--(i+inc,0)--(i+inc,max(f(i),f(i+inc)))
--(i, max(f(i),f(i+inc)))--cycle;
p := p scaled u;
fill p withcolor red+green;
draw p;
endfor;
draw pts_f withpen pencircle scaled 2;
draw xaxis;
draw yaxis;
pair t; % translation vector
t := (6u,0);
for i=x0 step inc until x1-inc:
path p;
p = (i,0)--(i+inc,0)--(i+inc,min(f(i),f(i+inc)))
--(i, min(f(i),f(i+inc)))--cycle;
p := p scaled u shifted t;
fill p withcolor red+green;
draw p;
endfor;
draw pts_f shifted t withpen pencircle scaled 2;
draw xaxis shifted t;
draw yaxis shifted t;
endfig;
end;

```

\section*{EXERCISE 29}
beginfig(1)
\(\mathrm{u}:=1 \mathrm{~cm}\);
draw \((-2 u, 0)--(2 u, 0)\);
draw \((0,-2 u)--(0,2 u)\);
for \(i=-2 u\) step \(u\) until \(2 u\) :
draw (i,2u)--(i, -2u);
draw (\(2 u, i\))--(\(-2 u, i\));
endfor;
for \(i=-2 u\) step \(u / 10\) until \(2 u\) :
```

    draw (i,2u)--(i,-2u) withpen pencircle scaled .1bp;
    draw (2u,i)--(-2u,i) withpen pencircle scaled .1bp;
    endfor;
endfig;
end;

```

EXERCISE 30
beginfig(1)
\(\mathrm{u}:=1 \mathrm{~cm}\);
pair A[], B[];
n := 3;
for \(i=1\) upto \(n\) :
\(\mathrm{A}[\mathrm{i}]=(0, \mathrm{i} * u)\);
\(B[i]=(n / 2 * u, i * u) ;\)
endfor;
for \(\mathrm{i}=1\) upto n :
for \(\mathrm{j}=1\) upto n :
draw A[i]--B[j];
endfor;
endfor
for \(\mathrm{i}=1\) upto n :
dotlabel.lft("a" \& decimal(i), A[i]);
dotlabel.rt("b" \& decimal(i), B[i]);
endfor;
endfig;
end;

\section*{EXERCISE 31}
\(\mathrm{u}:=3 \mathrm{~cm}\);
vardef koch(expr A,B,n) =
save C; pair C;
\(\mathrm{C}=\mathrm{A}\) rotatedaround (1/3[A,B], 120);
if \(\mathrm{n}>1\) :
koch (\(\mathrm{A}, \quad 1 / 3[\mathrm{~A}, \mathrm{~B}], \mathrm{n}-1\));
\(\operatorname{koch}(1 / 3[A, B], C, \quad n-1)\);
koch (C, 2/3[A,B], \(\mathrm{n}-1\));
koch (2/3[A,B], B, \(n-1\));
else:
draw \(A--1 / 3[A, B]--C--2 / 3[A, B]--B\);
fi;
enddef;
beginfig(1)
\(z 0=(u, 0)\);
z1=z0 rotated 120;
\(z 2=z 1\) rotated 120;
draw z0--z1--z2--cycle shifted (\(-3 u, 0\));
drawarrow (-1.75u,0)--(-1.25u,0);
koch (z0, z1, 1);
koch (z1, z2, 1);
koch(z2, z0, 1);
endfig;
```

beginfig(2)
z0=(u,0);
z1=z0 rotated 120;
z2=z1 rotated 120;
koch( z0, z1, 2);
koch( z1, z2, 2);
koch( z2, z0, 2);
endfig;
beginfig(3)
z0=(u,0);
z1=z0 rotated 120;
z2=z1 rotated 120;
koch( z0, z1, 6);
koch( z1, z2, 6);
koch( z2, z0, 6);
endfig;
end;

```

\section*{References}
[GRS94] Michel Goossens, Sebastian Rahtz, Frank Mittelbach. The LATEX Graphics Companion, Addison-Wesley (1994), ISBN 0-201-85469-4.
[Hag02] Hans Hagen. The Metafun Manual, 2002. downloadable as www. pragma-ade.com/general/manuals/metafun-p.pdf
[Hob92a] John D. Hobby: A User's manual for MetaPost, AT\&T Bell Laboratories Computing Science Technical Report 162, 1992.
[Hob92b] John D. Hobby: Drawing Graphs with MetaPost, AT\&T Bell Laboratories Computing Science Technical Report 164, 1992.

\section*{11 Appendix}

In this appendix we list the tables from the reference manual [Hob92a]. They summarize the built-in features of METAPOST and the features defined in the boxes macro package. Features that depend on boxes are marked by \(\ddagger\) symbols. Features from plain METAPOST are marked by \(\dagger\) symbols.

Table 3: Internal variables with numeric values
\begin{tabular}{|c|c|c|}
\hline Name & Page & Explanation \\
\hline \(\dagger\) ahangle & 37 & angle for arrowheads in degrees (default: 45) \\
\hline \(\dagger\) ahlength & 37 & size of arrowheads (default: 4bp) \\
\hline \(\dagger\) bboxmargin & 22 & extra space allowed by bbox (default 2bp) \\
\hline charcode & 41 & the number of the next character to be output \\
\hline \(\ddagger\) circmargin & 58 & clearance around contents of a circular or oval box \\
\hline day & - & the current day of the month \\
\hline \(\ddagger\) defaultdx & 55 & usual horizontal space around box contents (default 3bp) \\
\hline \(\ddagger\) defaultdy & 55 & usual vertical space around box contents (default 3bp) \\
\hline \(\dagger\) defaultpen & 39 & numeric index used by pickup to select default pen \\
\hline \(\dagger\) defaultscale & 20 & font scale factor for label strings (default 1) \\
\hline \(\dagger\) labeloffset & 19 & offset distance for labels (default 3bp) \\
\hline linecap & 35 & 0 for butt, 1 for round, 2 for square \\
\hline linejoin & 35 & 0 for mitered, 1 for round, 2 for beveled \\
\hline miterlimit & 35 & controls miter length as in PostScript \\
\hline month & - & the current month (e.g, \(3 \equiv\) March) \\
\hline pausing & - & \(>0\) to display lines on the terminal before they are read \\
\hline prologues & 22 & \(>0\) to output conforming PostScript using built-in fonts \\
\hline showstopping & - & \(>0\) to stop after each show command \\
\hline time & - & the number of minutes past midnight when this job started \\
\hline tracingcapsules & 61 & \(>0\) to show capsules too \\
\hline tracingchoices & 61 & \(>0\) to show the control points chosen for paths \\
\hline tracingcommands & 61 & \(>0\) to show commands and operations as they are performed \\
\hline tracingequations & 62 & \(>0\) to show each variable when it becomes known \\
\hline tracinglostchars & 62 & \(>0\) to show characters that aren't infont \\
\hline tracingmacros & 62 & \(>0\) to show macros before they are expanded \\
\hline tracingonline & 12 & \(>0\) to show long diagnostics on the terminal \\
\hline tracingoutput & 62 & \(>0\) to show digitized edges as they are output \\
\hline tracingrestores & 62 & \(>0\) to show when a variable or internal is restored \\
\hline tracingspecs & 62 & \(>0\) to show path subdivision when using a polygonal a pen \\
\hline tracingstats & 62 & \(>0\) to show memory usage at end of job \\
\hline tracingtitles & - & \(>0\) to show titles online when they appear \\
\hline truecorners & 23 & \(>0\) to make llcorner etc. ignore setbounds \\
\hline warningcheck & 12 & controls error message when variable value is large \\
\hline year & - & the current year (e.g., 1992) \\
\hline
\end{tabular}

Table 4: Other Predefined Variables
\begin{tabular}{|l|l|r|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & Page & \multicolumn{1}{c|}{ Explanation } \\
\hline \hline\(\dagger\) background & color & 25 & Color for unfill and undraw (usually white) \\
\hline\(\dagger\) currentpen & pen & 40 & Last pen picked up (for use by the draw command) \\
\hline\(\dagger\) currentpicture & picture & 40 & Accumulate results of draw and fill commands \\
\hline\(\dagger\) cuttings & path & 28 & subpath cut off by last cutbefore or cutafter \\
\hline\(\dagger\) defaultfont & string & 19 & Font used by label commands for typesetting strings \\
\hline\(\dagger\) extra_beginfig & string & 81 & Commands for beginfig to scan \\
\hline\(\dagger\) extra_endfig & string & 81 & Commands for endfig to scan \\
\hline
\end{tabular}

Table 5: Predefined Constants
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & Page & Explanation \\
\hline \(\dagger\) beveled & numeric & 35 & linejoin value for beveled joins [2] \\
\hline \(\dagger \mathrm{black}\) & color & 12 & Equivalent to (\(0,0,0\)) \\
\hline \(\dagger\) blue & color & 12 & Equivalent to (0,0,1) \\
\hline \(\dagger \mathrm{bp}\) & numeric & 2 & One PostScript point in bp units [1] \\
\hline \(\dagger\) butt & numeric & 35 & linecap value for butt end caps [0] \\
\hline \(\dagger\) †c & numeric & - & One cicero in bp units [12.79213] \\
\hline \(\dagger \mathrm{cm}\) & numeric & 2 & One centimeter in bp units [28.34645] \\
\hline \(\dagger\) td & numeric & - & One didot point in bp units [1.06601] \\
\hline \(\dagger\) ditto & string & - & The " character as a string of length 1 \\
\hline †down & pair & 6 & Downward direction vector (\(0,-1\)) \\
\hline \(\dagger\) †epsilon & numeric & - & Smallest positive MetaPost number [\(\left.\frac{1}{65536}\right]\) \\
\hline \(\dagger\) †evenly & picture & 32 & Dash pattern for equal length dashes \\
\hline false & boolean & 13 & The boolean value false \\
\hline \(\dagger\) fullcircle & path & 23 & Circle of diameter 1 centered on (0,0) \\
\hline †green & color & 12 & Equivalent to (\(0,1,0\)) \\
\hline \(\dagger\) halfcircle & path & 23 & Upper half of a circle of diameter 1 \\
\hline \(\dagger\) identity & transform & 31 & Identity transformation \\
\hline \(\dagger\) in & numeric & 2 & One inch in bp units [72] \\
\hline \(\dagger\) infinity & numeric & 28 & Large positive value [4095.99998] \\
\hline \(\dagger\) left & pair & 6 & Leftward direction (\(-1,0\)) \\
\hline \(\dagger\) mitered & numeric & 35 & linejoin value for mitered joins [0] \\
\hline \(\dagger \mathrm{mm}\) & numeric & 2 & One millimeter in bp units [2.83464] \\
\hline nullpicture & picture & 14 & Empty picture \\
\hline †origin & pair & - & The pair (0, 0) \\
\hline \(\dagger\) рc & numeric & - & One pica in bp units [11.95517] \\
\hline pencircle & pen & 38 & Circular pen of diameter 1 \\
\hline \(\dagger\) pensquare & pen & 39 & square pen of height 1 and width 1 \\
\hline \(\dagger \mathrm{pt}\) & numeric & 2 & One printer's point in bp units [0.99626] \\
\hline \(\dagger\) †uartercircle & path & - & First quadrant of a circle of diameter 1 \\
\hline \(\dagger\) †red & color & 12 & Equivalent to (1,0,0) \\
\hline \(\dagger\) †right & pair & 6 & Rightward direction (1,0) \\
\hline \(\dagger\) †rounded & numeric & 35 & linecap and linejoin value for round joins and end caps [1] \\
\hline \(\dagger\) tsquared & numeric & 35 & linecap value for square end caps [2] \\
\hline true & boolean & 13 & The boolean value true \\
\hline †unitsquare & path & - & The path (0,0)--(1,0)--(1,1)--(0,1)--cycle \\
\hline tup & pair & 6 & Upward direction (0,1) \\
\hline \(\dagger\) white & color & 12 & Equivalent to (1,1,1) \\
\hline \(\dagger\) tithdots & picture & 32 & Dash pattern that produces dotted lines \\
\hline
\end{tabular}

Table 6: Operators (Part 1)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Name} & \multicolumn{3}{|c|}{Argument/result types} & \multirow[t]{2}{*}{Page} & \multirow[t]{2}{*}{Explanation} \\
\hline & Left & Right & Result & & \\
\hline \& & string path & string path & string path & 14 & Concatenation-works for paths l\&r if \(r\) starts exactly where the \(l\) ends \\
\hline * & numeric & color numeric pair & color numeric pair & 13 & Multiplication \\
\hline * & color numeric pair & numeric & color numeric pair & 13 & Multiplication \\
\hline ** & numeric & numeric & numeric & 13 & Exponentiation \\
\hline + & color numeric pair & color numeric pair & color numeric pair & 13 & Addition \\
\hline ++ & numeric & numeric & numeric & 14 & Pythagorean addition \(\sqrt{l^{2}+r^{2}}\) \\
\hline +-+ & numeric & numeric & numeric & 14 & Pythagorean subtraction \(\sqrt{l^{2}-r^{2}}\) \\
\hline - & color numeric pair & color numeric pair & color numeric pair & 13 & Subtraction \\
\hline - & - & color numeric pair & color numeric pair & 13 & Negation \\
\hline / & color numeric pair & numeric & color numeric pair & 13 & Division \\
\hline \[
\begin{aligned}
& <=> \\
& <=>= \\
& <>
\end{aligned}
\] & \begin{tabular}{l}
string numeric \\
pair \\
color \\
transform
\end{tabular} & string numeric pair color transform & boolean & 13 & Comparison operators \\
\hline \(\dagger\) †abs & - & \begin{tabular}{l}
numeric \\
pair
\end{tabular} & numeric & 15 & Absolute value \\
\hline and & boolean & boolean & boolean & 13 & Logical and \\
\hline angle & - & pair & numeric & 15 & 2-argument arctangent (in degrees) \\
\hline arclength & - & path & numeric & 30 & Arc length of a path \\
\hline arctime of & numeric & path & numeric & 30 & Time on a path where arclength from the start reaches a given value \\
\hline ASCII & - & string & numeric & - & ASCII value of first character in string \\
\hline \(\dagger\) tbox & - & picture path pen & path & 22 & A rectangular path for the bounding box \\
\hline bluepart & - & color & numeric & 16 & Extracts the third component \\
\hline boolean & - & any & boolean & 16 & Is the expression of type boolean? \\
\hline bot & - & \begin{tabular}{l}
numeric \\
pair
\end{tabular} & \begin{tabular}{l}
numeric \\
pair
\end{tabular} & 38 & Bottom of current pen when centered at the given coordinate(s) \\
\hline \(\dagger\) †ceiling & - & numeric & numeric & 15 & Least integer greater than or equal to \\
\hline \(\dagger\) †enter & - & picture path pen & pair & 22 & Center of the bounding box \\
\hline
\end{tabular}

Table 7: Operators (Part 2)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Name} & \multicolumn{3}{|r|}{Argument/result types} & \multirow[t]{2}{*}{Page} & \multirow[t]{2}{*}{Explanation} \\
\hline & Left & Right & Result & & \\
\hline char & - & numeric & string & 22 & Character with a given ASCII code \\
\hline color & - & any & boolean & 16 & Is the expression of type color? \\
\hline cosd & - & numeric & numeric & 15 & Cosine of angle in degrees \\
\hline \(\dagger\) ¢utafter & path & path & path & 28 & Left argument with part after the intersection dropped \\
\hline \(\dagger\) †utbefore & path & path & path & 28 & Left argument with part before the intersection dropped \\
\hline cycle & - & path & boolean & 15 & Determines whether a path is cyclic \\
\hline decimal & - & numeric & string & 15 & The decimal representation \\
\hline \(\dagger\) dir & - & numeric & pair & 6 & \((\cos \theta, \sin \theta)\) given \(\theta\) in degrees \\
\hline ```
\daggerdirection
 of
``` & numeric & path & pair & 28 & The direction of a path at a given 'time' \\
\hline \(\dagger\) directionpoint of & pair & path & numeric & 30 & Point where a path has a given direction \\
\hline \[
\begin{aligned}
& \text { direction- } \\
& \text { time of }
\end{aligned}
\] & pair & path & numeric & 28 & 'Time' when a path has a given direction \\
\hline \(\dagger\) div & numeric & numeric & numeric & - & Integer division \(\lfloor l / r\rfloor\) \\
\hline \(\dagger\) dotprod & pair & pair & numeric & 13 & vector dot product \\
\hline floor & - & numeric & numeric & 15 & Greatest integer less than or equal to \\
\hline fontsize & - & string & numeric & 20 & The point size of a font \\
\hline greenpart & - & color & numeric & 16 & Extract the second component \\
\hline hex & - & string & numeric & - & Interpret as a hexadecimal number \\
\hline infont & string & string & picture & 22 & Typeset string in given font \\
\hline \(\dagger\) intersectionpoint & path & path & pair & 27 & An intersection point \\
\hline \begin{tabular}{l}
intersec- \\
tiontimes
\end{tabular} & path & path & pair & 27 & Times \(\left(t_{l}, t_{r}\right)\) on paths \(l\) and \(r\) when the paths intersect \\
\hline \(\dagger\) inverse & - & transform & transform & 31 & Invert a transformation \\
\hline known & - & any & boolean & 16 & Does argument have a known value? \\
\hline length & - & path & numeric & 28 & Number of arcs in a path \\
\hline \(\dagger\) †ft & - & \begin{tabular}{l}
numeric \\
pair
\end{tabular} & numeric pair & 38 & Left side of current pen when its center is at the given coordinate(s) \\
\hline llcorner & - & \begin{tabular}{l}
picture \\
path \\
pen
\end{tabular} & pair & 22 & Lower-left corner of bounding box \\
\hline lrcorner & - & \begin{tabular}{l}
picture \\
path \\
pen
\end{tabular} & pair & 22 & Lower-left corner of bounding box \\
\hline makepath & - & pen & path & 39 & Cyclic path bounding the pen shape \\
\hline makepen & - & path & pen & 39 & A polygonal pen made from the convex hull of the path knots \\
\hline mexp & - & numeric & numeric & - & The function \(\exp (x / 256)\) \\
\hline mlog & - & numeric & numeric & - & The function \(256 \ln (x)\) \\
\hline \(\dagger \mathrm{mod}\) & - & numeric & numeric & - & The remainder function \(l-r\lfloor l / r\rfloor\) \\
\hline \begin{tabular}{l}
normal- \\
deviate
\end{tabular} & - & - & numeric & - & Choose a random number with mean 0 and standard deviation 1 \\
\hline
\end{tabular}

Table 8: Operators (Part 3)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Name} & \multicolumn{3}{|r|}{Argument/result types} & \multirow[t]{2}{*}{Page} & \multirow[t]{2}{*}{Explanation} \\
\hline & Left & Right & Result & & \\
\hline not & - & boolean & boolean & 13 & Logical negation \\
\hline numeric & - & any & boolean & 16 & Is the expression of type numeric? \\
\hline oct & - & string & numeric & - & Interpret a string as an octal number \\
\hline odd & - & numeric & boolean & - & Is the closest integer odd or even? \\
\hline or & boolean & boolean & boolean & 13 & Logical inclusive or \\
\hline pair & - & any & boolean & 16 & Is the expression of type pair? \\
\hline path & - & any & boolean & 16 & Is the expression of type path? \\
\hline pen & - & any & boolean & 16 & Is the expression of type pen? \\
\hline penoffset of & pair & pen & pair & - & Point on the pen furthest to the right of the given direction \\
\hline picture & - & any & boolean & 16 & Is the expression of type picture? \\
\hline point of & numeric & path & pair & 27 & Point on a path given a time value \\
\hline postcontrol of & numeric & path & pair & - & First Bézier control point on path segment starting at the given time \\
\hline \[
\begin{aligned}
& \text { precontrol } \\
& \text { of }
\end{aligned}
\] & numeric & path & pair & - & Last Bézier control point on path segment ending at the given time \\
\hline redpart & - & color & numeric & 16 & Extract the first component \\
\hline reverse & - & path & path & 37 & 'time'-reversed path with beginning swapped with ending \\
\hline rotated & \begin{tabular}{l}
picture \\
path \\
pair \\
pen \\
transform
\end{tabular} & numeric & \begin{tabular}{l}
picture \\
path \\
pair \\
pen \\
transform
\end{tabular} & 30 & Rotate counterclockwise a given number of degrees \\
\hline \(\dagger\) ¢ound & - & \begin{tabular}{l}
numeric \\
pair
\end{tabular} & \begin{tabular}{l}
numeric \\
pair
\end{tabular} & 15 & round each component to the nearest integer \\
\hline †rt & \({ }^{-}\) & \begin{tabular}{l}
numeric \\
pair
\end{tabular} & \begin{tabular}{l}
numeric \\
pair
\end{tabular} & 38 & Right side of current pen when centered at given coordinate(s) \\
\hline scaled & \begin{tabular}{l}
picture \\
path \\
pair \\
pen \\
transform
\end{tabular} & numeric & \begin{tabular}{l}
picture \\
path \\
pair \\
pen \\
transform
\end{tabular} & 30 & Scale all coordinates by the given amount \\
\hline shifted & \begin{tabular}{l}
picture \\
path \\
pair \\
pen \\
transform
\end{tabular} & pair & \begin{tabular}{l}
picture \\
path \\
pair \\
pen \\
transform
\end{tabular} & 30 & Add the given shift amount to each pair of coordinates \\
\hline sind & - & numeric & numeric & 15 & Sine of an angle in degrees \\
\hline slanted & \begin{tabular}{l}
picture \\
path \\
pair \\
pen \\
transform
\end{tabular} & numeric & \begin{tabular}{l}
picture \\
path \\
pair \\
pen \\
transform
\end{tabular} & 30 & Apply the slanting transformation that maps \((x, y)\) into \((x+s y, y)\), where \(s\) is the numeric argument \\
\hline sqrt & - & numeric & numeric & 15 & Square root \\
\hline str & - & suffix & string & 50 & String representation for a suffix \\
\hline
\end{tabular}

Table 9: Operators (Part 4)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Name} & \multicolumn{3}{|c|}{Argument/result types} & \multirow[t]{2}{*}{Page} & \multirow[t]{2}{*}{Explanation} \\
\hline & Left & Right & Result & & \\
\hline string & - & any & boolean & 16 & Is the expression of type string? \\
\hline subpath of & pair & path & path & 28 & Portion of a path for given range of time values \\
\hline \[
\begin{aligned}
& \text { substring } \\
& \text { of }
\end{aligned}
\] & pair & string & string & 14 & Substring bounded by given indices \\
\hline \(\dagger\) top & - & \begin{tabular}{l}
numeric \\
pair
\end{tabular} & \begin{tabular}{l}
numeric \\
pair
\end{tabular} & 38 & Top of current pen when centered at the given coordinate(s) \\
\hline transform & - & any & boolean & 16 & Is the argument of type transform? \\
\hline transformed & \begin{tabular}{l}
picture \\
path \\
pair \\
pen \\
transform
\end{tabular} & transform & \begin{tabular}{l}
picture \\
path \\
pair \\
pen \\
transform
\end{tabular} & 31 & Apply the given transform to all coordinates \\
\hline ulcorner & - & \begin{tabular}{l}
picture \\
path \\
pen
\end{tabular} & pair & 22 & Upper-left corner of bounding box \\
\hline uniformdeviate & - & numeric & numeric & - & Random number between zero and the value of the argument \\
\hline †unitvector & - & pair & pair & 15 & Rescale a vector so its length is 1 \\
\hline unknown & - & any & boolean & 16 & Is the value unknown? \\
\hline urcorner & - & picture path pen & pair & 22 & Upper-left corner of bounding box \\
\hline \(\dagger\) whatever & - & - & numeric & 10 & Create a new anonymous unknown \\
\hline xpart & - & \begin{tabular}{l}
pair \\
transform
\end{tabular} & number & 16 & \(x\) or \(t_{x}\) component \\
\hline xscaled & \begin{tabular}{l}
picture \\
path \\
pair \\
pen \\
transform
\end{tabular} & numeric & \begin{tabular}{l}
picture \\
path \\
pair \\
pen \\
transform
\end{tabular} & 30 & Scale all \(x\) coordinates by the given amount \\
\hline xxpart & - & transform & number & 32 & \(t_{x x}\) entry in transformation matrix \\
\hline xypart & - & transform & number & 32 & \(t_{x y}\) entry in transformation matrix \\
\hline ypart & - & \begin{tabular}{l}
pair \\
transform
\end{tabular} & number & 16 & \(y\) or \(t_{y}\) component \\
\hline yscaled & \begin{tabular}{l}
picture \\
path \\
pair \\
pen \\
transform
\end{tabular} & numeric & picture
path
pair
pen
transform & 30 & Scale all \(y\) coordinates by the given amount \\
\hline yxpart & - & transform & number & 32 & \(t_{y x}\) entry in transformation matrix \\
\hline yypart & - & transform & number & 32 & \(t_{y y}\) entry in transformation matrix \\
\hline zscaled & \begin{tabular}{l}
picture \\
path \\
pair \\
pen \\
transform
\end{tabular} & pair & \begin{tabular}{l}
picture \\
path \\
pair \\
pen \\
transform
\end{tabular} & 30 & Rotate and scale all coordinates so that \((1,0)\) is mapped into the given pair; i.e., do complex multiplication. \\
\hline
\end{tabular}

Table 10: Commands
\begin{tabular}{|l|r|l|}
\hline \multicolumn{1}{|c|}{ Name } & Page & \multicolumn{1}{c|}{ Explanation } \\
\hline \hline addto & 40 & Low-level command for drawing and filling \\
\hline clip & 40 & Applies a clipping path to a picture \\
\hline †cutdraw & 52 & Draw with butt end caps \\
\hline\(\dagger\) draw & 3 & Draw a line or a picture \\
\hline\(\dagger\) drawarrow & 37 & Draw a line with an arrowhead at the end \\
\hline\(\dagger\) drawdblarrow & 37 & Draw a line with arrowheads at both ends \\
\hline\(\dagger\) fill & 23 & Fill inside a cyclic path \\
\hline\(\dagger\) filldraw & 37 & Draw a cyclic path and fill inside it \\
\hline interim & 43 & Make a local change to an internal variable \\
\hline let & - & Assign one symbolic token the meaning of another \\
\hline\(\dagger\) loggingall & 61 & Turn on all tracing (log file only \()\) \\
\hline newinternal & 18 & Declare new internal variables \\
\hline\(\dagger\) pickup & 13 & Specify new pen for line drawing \\
\hline save & 42 & Make variables local \\
\hline setbounds & 23 & Make a picture lie about its bounding box \\
\hline shipout & 41 & Low-level command to output a figure \\
\hline show & 12 & print out expressions symbolically \\
\hline showdependencies & 61 & print out all unsolved equations \\
\hline showtoken & 61 & print an explanation of what a token is \\
\hline showvariable & 61 & print variables symbolically \\
\hline special & 81 & print a string directly in the PostScript output file \\
\hline\(\dagger\) tracingall & 61 & Turn on all tracing \\
\hline\(\dagger\) tracingnone & 61 & Turn off all tracing \\
\hline\(\dagger\) undraw & 37 & Erase a line or a picture \\
\hline\(\dagger\) unfill & 25 & Erase inside a cyclic path \\
\hline\(\dagger\) unfilldraw & 37 & Erase a cyclic path and its inside \\
\hline & & \\
\hline
\end{tabular}

Table 11：Function－Like Macros
\begin{tabular}{|c|c|c|c|c|}
\hline Name & Arguments & Result & Page & Explanation \\
\hline \(\ddagger\) boxit & suffix，picture & － & 54 & Define a box containing the picture \\
\hline \(\ddagger\) boxit & suffix，string & － & 57 & Define a box containing text \\
\hline \(\ddagger\) boxit & suffix，〈empty〉 & － & 57 & Define an empty box \\
\hline \(\ddagger\) boxjoin & equations & － & 55 & Give equations for connecting boxes \\
\hline \(\ddagger\) bpath & suffix & path & 55 & A box＇s bounding circle or rectangle \\
\hline \(\dagger\) buildcycle & list of paths & path & 25 & Build a cyclic path \\
\hline \(\ddagger\) circleit & suffix，picture & － & 57 & Put picture in a circular box \\
\hline \(\ddagger\) circleit & suffix，picture & － & 57 & Put a string in a circular box \\
\hline \(\ddagger\) circleit & suffix，〈empty〉 & － & 57 & Define an empty circular box \\
\hline \(\dagger\) †ashpattern & on／off distances & picture & 34 & Create a pattern for dashed lines \\
\hline \(\dagger\) decr & numeric variable & numeric & 51 & Decrement and return new value \\
\hline \(\dagger\) dotlabel & suffix，picture，pair & － & 19 & Mark point and draw picture nearby \\
\hline \(\dagger\) dotlabel & suffix，string，pair & － & 19 & Mark point and place text nearby \\
\hline \(\dagger\) dotlabels & suffix，point numbers & － & 19 & Mark z points with their numbers \\
\hline \(\ddagger\) drawboxed & list of suffixes & － & 54 & Draw the named boxes and their contents \\
\hline \(\ddagger\) drawboxes & list of suffixes & － & 57 & Draw the named boxes \\
\hline \(\dagger\) †rawoptions & drawing options & － & ？？ & Set options for drawing commands \\
\hline \(\ddagger\) drawunboxed & list of suffixes & － & 57 & Draw contents of named boxes \\
\hline \(\ddagger \mathrm{fixpos}\) & list of suffixes & － & 57 & Solve for the size and position of the named boxes \\
\hline \(\ddagger \mathrm{fixsize}\) & list of suffixes & － & 57 & Solve for size of named boxes \\
\hline \(\dagger\) incr & numeric variable & numeric & 51 & Increment and return new value \\
\hline \(\dagger\) label & suffix，picture，pair & － & 18 & Draw picture near given point \\
\hline \(\dagger\) label & suffix，string，pair & － & 18 & Place text near given point \\
\hline \(\dagger\) †abels & suffix，point numbers & － & 19 & Draw z point numbers；no dots \\
\hline \(\dagger\) max & list of numerics & numeric & － & Find the maximum \\
\hline \(\dagger\) max & list of strings & string & － & Find the lexicographically last string \\
\hline \(\dagger\) min & list of numerics & numeric & － & Find the minimum \\
\hline \(\dagger\) min & list of strings & string & － & Find the lexicographically first string \\
\hline \(\ddagger\) pic & suffix & picture & 57 & Box contents shifted into position \\
\hline \(\dagger\) thelabel & suffix，picture，pair & picture & 19 & Picture shifted as if to label a point \\
\hline \(\dagger\) thelabel & suffix，string，pair & picture & 19 & text positioned as if to label a point \\
\hline \(\dagger \mathrm{z}\) & suffix & pair & 17 & The pair x \({ }^{\text {dsuffix }\rangle, ~ y\langle s u f f i x\rangle) ~}\) \\
\hline
\end{tabular}```


[^0]:    ${ }^{1}$ You can also run METAPOST on a windows platform, e.g., using MikTEXand the WinEdT shell.
    ${ }^{2}$ On the left is printed the graphic result of the METAPOST code on the right. Here, a square is drawn.

[^1]:    ${ }^{3}$ Notice that the bounding box is larger than you might expect, due to the default width of the line drawing the square.

[^2]:    ${ }^{4}$ If you have not specified in your UNIX shell the METAPOST editor that you prefer, then the vi-editor will be started. You can leave this editor by entering ZZ. In the c-shell you can add in the file .cshrc the line setenv MPEDIT 'xemacs $+\%$ d s' so that XEmACS is used.

[^3]:    ${ }^{5}$ The $A$-median of a triangle $A B C$ is the line from $A$ to the midpoint of the opposite edge $B C$.

[^4]:    ${ }^{6}$ the curves through the three points are a circle or a part of the circle

[^5]:    ${ }^{7}$ See www. chinesefortunecalendar.com/YinYang.htm for details about the symbol.

[^6]:    ${ }^{8}$ in fact, save is a vardef macro, which has the begingroup and begingroup automatically placed around the replacement text. Thus, the begingroup and endgroup are superfluous here.

[^7]:    ${ }^{9}$ Compare this example with your own code in exercise 22 .

